Chap3 ExtraHomeworkProblems

Wednesday, May 30, 2012 10:33 AM

(b) Derive formulas for the minimum time required to nove from so to s_T using a linear segment with Parabolic blends. Initial and final speeds, vo and v_T , and the maximum speed and acceleration are given, such that: $V_{max} \ge 0$ amax ≥ 0 $-V_{max} < V_0 < V_{max}$ $-V_{max} < V_T < V_{max}$ $V_0 = V_T$

Derive a cubic spline to move from so to s_T with
s₀ = s_T = 0. Then answer the following questions:
i Given T, what is the maximum speed, \$(t), along the trajectory ?

ii Given the maximum allowable acceleration, amax, what is the minimum T possible?

(B) Derive the Jacobian, B, relating the angular
velocity of a frame to the rates of the Euler
angles:
$$\begin{bmatrix} \phi \\ \phi \\ \phi \end{bmatrix} = B(\phi, \phi, \psi) \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

The dife the eight of the field of the back