Foundations of Artificial Intelligence

Prof. Dr. W. Burgard, Prof. Dr. B. Nebel, Prof. Dr. M. Riedmiller J. Aldinger, B. Frank Summer Term 2012 University of Freiburg Department of Computer Science

Exercise Sheet 4 Due: Wednesday, June 27, 2012

Exercise 4.1 (Satisfiability and Resolution)

- (a) Decide for each of the following propositions whether they are valid, satisfiable or neither valid nor satisfiable.
 - (i) $Smoke \Rightarrow Smoke$
 - (ii) $Smoke \Rightarrow Fire$
 - (iii) $(Smoke \Rightarrow Fire) \Rightarrow (\neg Fire \Rightarrow \neg Smoke)$
 - (iv) $(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)$
 - (v) $TheBestTeamWins \Leftrightarrow GermanyWinsTheEuro2012$
- (b) Let $K = \{\{A, B, \neg C\}, \{\neg A, C\}, \{\neg A, \neg B\}, \{A, C\}\}$. Use the resolution method to show that $K \models (\neg B \Rightarrow (A \land C))$.

Exercise 4.2 (Davis-Putnam Procedure)

Use the Davis-Putnam procedure to compute models for the following clause sets or to prove that no model exists. Whenever possible, apply *unit propagation*. At each step, indicate which rule you have applied.

- (a) $\{\{P, \neg Q\}, \{\neg P, Q\}, \{Q, \neg R\}, \{S\}, \{\neg S, \neg Q, \neg R\}, \{S, R\}\}$
- (b) $\{\{P,Q,S,T\},\{P,S,\neg T\},\{Q,\neg S,T\},\{P,\neg S,\neg T\},\{P,\neg Q\},\{\neg R,\neg P\},\{R\}\}$

Exercise 4.3

Consider following colloquial sentences:

- (a) Not all students attend AI and ST.
- (b) One student failed both AI and ST.
- (c) Exactly two students failed ST.
- (d) There is a barber who shaves all men in town who do not shave themselves.
- (e) No one likes a professor who is not smart.

Represent these sentences in first-order logic using the predicates student(x), at-tends(x,y), fails(x,y), barber(x), shaves(x,y), professor(x), likes(x,y) und smart(x).

Exercise 4.4

Consider the following set of formulae Θ and the interpretation \mathcal{I} :

- $\Theta = \{\text{Person(a)}, \text{Person(b)}, \forall x \ (\text{Person(x)} \Rightarrow (\text{Small(x)} \lor \text{Stupid(x)})) \}$ - $D = \{d_1, d_2, d_3\}$

-
$$\mathbf{a}^{\mathcal{I}} = d_1, \mathbf{b}^{\mathcal{I}} = d_2$$

- $\operatorname{Person}^{\mathcal{I}} = \{d_1, d_2, d_3\}$ - $\operatorname{Small}^{\mathcal{I}} = \{d_1\}, \operatorname{Stupid}^{\mathcal{I}} = \{d_3\}$ - $\alpha = \{(\mathbf{x} \mapsto d_1), (\mathbf{y} \mapsto d_2)\}$

Answer the following questions, i.e. state whether interpretation \mathcal{I} under α is a model of the respective formula or not. Explain your answers.

- (a) $\mathcal{I}, \alpha \models \forall x \; (\text{Person}(x) \Rightarrow (\text{Small}(x) \lor \text{Stupid}(x))?$
- (b) $\mathcal{I}, \alpha \models \texttt{Person}(\texttt{x}) \Rightarrow (\texttt{Small}(\texttt{x}) \lor \texttt{Stupid}(\texttt{x}))?$
- (c) $\mathcal{I}, \alpha \models \texttt{Small(y)}?$
- (d) $\mathcal{I}, \alpha \models \exists y \; \texttt{Stupid}(y)?$
- (e) $\mathcal{I}, \alpha \models \Theta$?

Exercise 4.5

(a) Transform the following formula into Skolem Normal Form (SNF):

$$\forall z \exists y (P(x, g(y), z) \lor \neg \forall x Q(x)) \land \neg \forall z \exists x \forall t \neg R(f(x, z), z, t))$$

(b) Give the 10 smallest terms in the Herbrand universe and the 10 smallest formulae in the Herbrand expansion of the following formula:

$$\forall x \forall y P(c, f(x, b), g(y))$$

The exercise sheets may and should be worked on in groups of three (3) students. Please write all your names and the number of your exercise group on your solution.