Foundations of Artificial Intelligence
4. Informed Search Methods
Heuristics, Local Search Methods, Genetic Algorithms

Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller

Albert-Ludwigs-Universität Freiburg

Mai 9, 2012
Contents

1. Best-First Search
2. A* and IDA*
3. Local Search Methods
4. Genetic Algorithms
Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the worth of expanding a node n is given in the form of an *evaluation function* $f(n)$, which assigns a real number to each node. Mostly, $f(n)$ includes as a component a *heuristic function* $h(n)$, which estimates the costs of the cheapest path from n to the goal.

Best-First Search: Informed search procedure that expands the node with the “best” f-value first.
function Tree-Search(\textit{problem}) \textbf{returns} a solution, or failure
initialize the frontier using the initial state of \textit{problem}
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the chosen node, adding the resulting nodes to the frontier

Best-first search is an instance of the general Tree-Search algorithm in which \textit{frontier} is a priority queue ordered by an evaluation function f.

When f is always correct, we do not need to search!
A possible way to judge the “worth” of a node is to estimate its path-costs to the goal.

\[h(n) = \text{estimated path-costs from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search using \(h(n) \) as the evaluation function, i.e., \(f(n) = h(n) \) is called a greedy search.

Example: route-finding problem:
\(h(n) = \text{straight-line distance from } n \text{ to the goal} \)
The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word ευρισκειν (note also: ευρηκα!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is *problem-specific* and *focuses* the search!
Greedy Search Example
Greedy Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras
Greedy Search - Properties

- A good heuristic might reduce search time drastically
- Non-optimal
- Incomplete
- Graph-search version is complete only in finite spaces

Can we do better?
A*: Minimization of the Estimated Path Costs

A* combines the greedy search with the uniform-search strategy: Always expand node with lowest $f(n)$ first, where

\[g(n) = \text{actual cost from the initial state to } n. \]

\[h(n) = \text{estimated cost from } n \text{ to the next goal.} \]

\[f(n) = g(n) + h(n), \]

the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal. h is admissible if the following holds for all n:

\[h(n) \leq h^*(n) \]

We require that for A*, h is admissible (example: straight-line distance is admissible).

In other words, h is an optimistic estimate of the costs that actually occur.
A* Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea
A* Search from Arad to Bucharest

(e) After expanding Fagaras

(f) After expanding Pitesti
Example: Path Planning for Robots in a Grid-World
Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^*, but A^* has found another node G_2 with $g(G_2) > f^*$.

![Diagram showing the optimality of A^*](attachment:diagram.png)
Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq f^*.$$

Since n was not expanded before G_2, the following must hold:

$$f(G_2) \leq f(n)$$

and

$$f(G_2) \leq f^*.$$

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*.$$

→ Contradicts the assumption!
Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant $\delta > 0$ such that every step has at least cost δ.

\rightarrow there exists only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:

In general, still exponential in the path length of the solution (space, time).

More refined complexity results depend on the assumptions made, e.g. on the quality of the heuristic function. Example:

In the case in which $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a sub-exponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].
Heuristic Function Example

Start State

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

$h_1 = \text{the number of tiles in the wrong position}$

$h_2 = \text{the sum of the distances of the tiles from their goal positions}$

(Manhattan distance)
Empirical Evaluation

- \(d = \text{distance from goal} \)
- Average over 100 instances

<table>
<thead>
<tr>
<th>(d)</th>
<th>Search Cost (nodes generated)</th>
<th>Effective Branching Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDS</td>
<td>A*((h_1))</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>539</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1301</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>3056</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>7276</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>18094</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>39135</td>
</tr>
</tbody>
</table>
Variants of A* in general still suffers from exponential memory growth. Therefore, several refinements have been suggested:

- iterative-deepening A*, where the f-costs are used to define the cutoff (rather than the depth of the search tree): **IDA**

- Recursive Best First Search (RBFS): introduces a variable f_{limit} to keep track of the best alternative path available from any ancestor of the current node. If current node exceeds this limit, recursion unwinds back to the alternative path.

- other alternatives (not discussed here) memory-bounded A* (MA*), and simplified MA*, SMA*.
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
 return RBFS(problem, MAKE-NODE(problem.INITIAL-STATE), ∞)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit
 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
 successors ← []
 for each action in problem.ACTIONS(node.STATE) do
 add CHILD-NODE(problem, node, action) into successors
 if successors is empty then return failure, ∞
 for each s in successors do /* update f with value from previous search, if any */
 s.f ← max(s.g + s.h, node.f)
 loop do
 best ← the lowest f-value node in successors
 if best.f > f_limit then return failure, best.f
 alternative ← the second-lowest f-value among successors
 result, best.f ← RBFS(problem, best, min(f_limit, alternative))
 if result ≠ failure then return result
Local Search Methods

- In many problems, it is unimportant how the goal is reached - only the goal itself matters (8-queens problem, VLSI Layout, TSP).
- If in addition a quality measure for states is given, a **local search** can be used to find solutions.
- operates using a single current node (rather than multiple paths)
- use very little memory
- Idea: Begin with a randomly-chosen configuration and improve on it stepwise → **Hill Climbing**.
- note: can be used for maximization or minimization respectively (see 8 queens example)
Example state with heuristic cost estimate $h = 17$ (counts the number of pairs threatening each other directly or indirectly).
function `HILL-CLIMBING(problem)` returns a state that is a local maximum

`current ← MAKE-NODE(problem.INITIAL-STATE)`

`loop do`

`neighbor ← a highest-valued successor of current`

`if neighbor.VALUE ≤ current.VALUE then return current.STATE`

`current ← neighbor`
Example: 8-Queens Problem (2)

Possible realization of a hill-climbing algorithm:
Select a column and move the queen to the square with the fewest conflicts.
Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus**: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:

- *Start over* when no progress is being made.
- “Inject noise” → random walk

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.
Local minimum \((h = 1)\) of the 8-Queens Problem. Every successor has a higher cost.
Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima, that are not directly connected to each other. From each local maximum, all the available actions point downhill.
8 queens has about $8^8 \approx 17 \text{ million}$ states. Starting from a random initialization, hill-climbing directly finds a solution in about 14% of the cases. Needs in average only 4 steps!

Better algorithm: allow sideways moves (no improvement), but restrict the number of moves (avoid infinite loops!).

E.g.: max. 100 moves: solves 94%, number of steps raises to 21 steps for successful instances and 64 for each failure.
Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to “temperature”

    current ← MAKE-NODE(problem.INITIAL-STATE)
    for t = 1 to ∞ do
        T ← schedule(t)
        if T = 0 then return current
        next ← a randomly selected successor of current
        ΔE ← next.VALUE − current.VALUE
        if ΔE > 0 then current ← next
        else current ← next only with probability e^{ΔE/T}
```

Has been used since the early 80’s for VSLI layout and other optimization problems.
Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by “crossing”, “mutating”, and “selecting” successful solutions.

Ingredients:
- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossing

Many variations:
how selection will be applied, what type of cross-over operators will be used, etc.

Selection of individuals according to a fitness function and pairing

Calculation of the breaking points and recombination

According to a given probability elements in the string are modified.
Heuristics focus the search

Best-first search expands the node with the highest worth (defined by any measure) first.

With the minimization of the evaluated costs to the goal h we obtain a greedy search.

The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is admissible, i.e., h^* is never overestimated, we obtain the A* search, which is complete and optimal.

IDA* is a combination of the iterative-deepening and A* searches.

Local search methods only ever work on one state, attempting to improve it step-wise.

Genetic algorithms imitate evolution by combining good solutions.