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Constraint Satisfaction Problems

A Constraint Satisfaction Problems (CSP) consists of

a set of variables {X1, X2, . . . , Xn} to which
values {d1, d2, . . . , dk} can be assigned
such that a set of constraints over the variables is respected

A CSP is solved by a variable assignment that satisfies all given
constraints.

In CSPs, states are explicitly represented as variable assignments. CSP
search algorithms take advantage of this structure.

The main idea is to exploit the constraints to eliminate large portions of
search space.

Formal representation language with associated general inference
algorithms
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Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: WA,NT ,SA,Q ,NSW ,V ,T

Values: {red , green, blue}
Constraints: adjacent regions must have different colors,
e.g., NSW 6= V
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Australian Capital Territory (ACT)
and Canberra (inside NSW)

View of the Australian National University and Telstra Tower

(University of Freiburg) Foundations of AI Mai 11, 2012 5 / 39



One Solution

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solution assignment:

{WA = red ,NT = green,Q = red ,NSW = green,V = red ,SA =
blue,T = green}
Perhaps in addition ACT = blue
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Constraint Graph

Victoria

WA

NT

SA

Q

NSW

V

T

a constraint graph can be used to visualize binary constraints

for higher order constraints, hyper-graph representations might be used

Nodes = variables, arcs = constraints

Note: Our problem is 3-colorability for a planar graph
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Variations

Binary, ternary, or even higher arity (e.g., ALL DIFFERENT)

Finite domains (d values) → dn possible variable assignments

Infinite domains (reals, integers)

linear constraints: solvable (in P if real)
nonlinear constraints: unsolvable
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Applications

Timetabling (classes, rooms, times)

Configuration (hardware, cars, . . . )

Spreadsheets

Scheduling

Floor planning

Frequency assignments

Sudoku

. . .
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Backtracking Search over Assignments

Assign values to variables step by step (order does not matter)

Consider only one variable per search node!

DFS with single-variable assignments is called backtracking search

Can solve n-queens for n ≈ 25
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Algorithm
14 Chapter 6. Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ },csp)

function BACKTRACK(assignment ,csp) returns a solution, or failure
if assignment is completethen return assignment
var← SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN -VALUES(var ,assignment ,csp) do

if value is consistent withassignment then
add{var = value} to assignment
inferences← INFERENCE(csp,var ,value)
if inferences 6= failure then

addinferences to assignment
result←BACKTRACK(assignment ,csp)
if result 6= failure then

return result
remove{var = value} andinferences from assignment

return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algo-
rithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN -VALUES, we can implement the general-
purpose heuristics discussed in the text. The function INFERENCEcan optionally be used to impose
arc-, path-, ork-consistency, as desired. If a value choice leads to failure(noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from
the current assignment and a new value is tried.

function M IN-CONFLICTS(csp,max steps ) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps , the number of steps allowed before giving up

current←an initial complete assignment forcsp
for i = 1 tomax steps do

if current is a solution forcsp then return current
var← a randomly chosen conflicted variable fromcsp.VARIABLES

value← the valuev for var that minimizes CONFLICTS(var ,v ,current ,csp)
setvar = value in current

return failure

Figure 6.8 The MIN-CONFLICTSalgorithm for solving CSPs by local search. The initial state may
be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each
variable in turn. The CONFLICTS function counts the number of constraints violated by a particular
value, given the rest of the current assignment.
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Example (1)
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Example (2)
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Example (3)
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Example (4)
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Improving Efficiency:
CSP Heuristics & Pruning Techniques

Variable ordering: Which one to assign first?

Value ordering: Which value to try first?

Try to detect failures early on

Try to exploit problem structure

→ Note: all this is not problem-specific!
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Variable Ordering:
Most constrained first

Most constrained variable:

choose the variable with the fewest remaining legal values
→ reduces branching factor!
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Variable Ordering:
Most Constraining Variable First

Break ties among variables with the same number of remaining legal
values:

choose variable with the most constraints on remaining unassigned
variables

→ reduces branching factor in the next steps
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Value Ordering:
Least Constraining Value First

Given a variable,

choose first a value that rules out the fewest values in the remaining
unassigned variables

→ We want to find an assignment that satisfies the constraints (of
course, does not help if unsat.)

Allows 1 value for SA

Allows 0 values for SA
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Rule out Failures early on:
Forward Checking

Whenever a value is assigned to a variable, values that are now illegal
for other variables are removed

Implements what the ordering heuristics implicitly compute

WA = red, then NT cannot become red

If all values are removed for one variable, we can stop!
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Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T
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Forward Checking (2)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T
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Forward Checking (3)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T
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Forward Checking (4)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T
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Forward Checking:
Sometimes it Misses Something

Forward Checking propagates information from assigned to unassigned
variables

However, there is no propagation between unassigned variables

WA NT Q NSW V SA T
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Arc Consistency

A directed arc X → Y is “consistent” iff

for every value x of X, there exists a value y of Y , such that (x, y)
satisfies the constraint between X and Y

Remove values from the domain of X to enforce arc-consistency

Arc consistency detects failures earlier

Can be used as preprocessing technique or as a propagation step during
backtracking
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Arc Consistency Example

WA NT Q NSW V SA T
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AC3 Algorithm

6
CONSTRAINT
SATISFACTION
PROBLEMS

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components(X, D, C)
local variables: queue , a queue of arcs, initially all the arcs incsp

while queue is not emptydo
(Xi, Xj)←REMOVE-FIRST(queue)
if REVISE(csp, Xi, Xj ) then

if size ofDi = 0 then return false
for each Xk in Xi.NEIGHBORS- {Xj} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, Xj ) returns true iff we revise the domain ofXi

revised← false
for each x in Di do

if no valuey in Dj allows (x ,y) to satisfy the constraint betweenXi andXj then
deletex from Di

revised← true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arc-
consistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The
name “AC-3” was used by the algorithm’s inventor (?) becauseit’s the third version developed in the
paper.

13
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Properties of AC3

AC3 runs in O(d3n2) time, with n being the number of nodes and d
being the maximal number of elements in a domain

Of course, AC3 does not detect all inconsistencies (which is an NP-hard
problem)
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Problem Structure (1)

Victoria

WA

NT

SA

Q

NSW

V

T

CSP has two independent components

Identifiable as connected components of constraint graph

Can reduce the search space dramatically
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Problem Structure (2):
Tree-structured CSPs

A

B

C

D

E

F

If the CSP graph is a tree, then it can be solved in O(nd2)

General CSPs need in the worst case O(dn)

Idea: Pick root, order nodes, apply arc consistency from leaves to root,
and assign values starting at root
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Problem Structure (2):
Tree-structured CSPs

A

B

C

D

E

F

A B C D E F

(a) (b)

Pick any variable as root; choose an ordering such that each variable
appears after its parent in the tree.

Apply arc-consistency to (Xi, Xk), when Xi is the parent of Xk, for all
k = n down to 2. (any tree with n nodes has n− 1 arcs, per arc d2

comparisons are needed: O(nd2))

Now one can start at X1 assigning values from the remaining domains
without creating any conflict in one sweep through the tree!

Algorithm linear in n
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Problem Structure (3):
Almost Tree-structured

Idea: Reduce the graph structure to a tree by fixing values in a reasonably
chosen subset

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Instantiate a variable and prune values in neighboring variables is called
Conditioning
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Problem Structure (4):
Almost Tree-structured

Algorithm Cutset Conditioning:

1 Choose a subset S of the CSPs variables such that the constraint graph
becomes a tree after removal of S. S is called a cycle cutset.

2 For each possible assignment of variables in S that satisfies all
constraints on S
1 remove from the domains of the remaining variables any values that are

inconsistent with the assignments for S, and
2 if the remaining CSP has a solution, return it together with the assignment

for S

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Note: Finding the smallest cycle cutset is NP hard, but several efficient
approximation algorithms are known.
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Another Method:
Tree Decomposition (1)

Decompose problem into a set of connected sub-problems, where two
sub-problems are connected when they share a constraint

Solve sub-problems independently and combine solutions

WA

NT

SA

T

SA NSW

V

SA

Q

NSW

NT

SA

Q
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Another Method:
Tree Decomposition (2)

A tree decomposition must satisfy the following conditions:

Every variable of the original problem appears in at least one sub-problem

Every constraint appears in at least one sub-problem

If a variable appears in two sub-problems, it must appear in all sub-problems
on the path between the two sub-problems

The connections form a tree

WA

NT

SA

T

SA NSW

V

SA

Q

NSW

NT

SA

Q
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Another Method:
Tree Decomposition (3)

Consider sub-problems as new mega-variables, which have values defined
by the solutions to the sub-problems

Use technique for tree-structured CSP to find an overall solution
(constraint is to have identical values for the same variable)
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Tree Width

The aim is to make the subproblems as small as possible.Tree width w
of a tree decomposition is the size of largest sub-problem minus 1

Tree width of a graph is minimal tree width over all possible tree
decompositions

If a graph has tree width w and we know a tree decomposition with that
width, we can solve the problem in O(ndw+1)

Unfortunately, finding a tree decomposition with minimal tree width is
NP-hard. However, there are heuristic methods that work well in
practice.
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Summary & Outlook

CSPs are a special kind of search problem:

states are value assignments
goal test is defined by constraints

Backtracking = DFS with one variable assigned per node. Other
intelligent backtracking techniques possible

Variable/value ordering heuristics can help dramatically

Constraint propagation prunes the search space

Path-consistency is a constraint propagation technique for triples of
variables

Tree structure of CSP graph simplifies problem significantly

Cutset conditioning and tree decomposition are two ways to transform
part of the problem into a tree

CSPs can also be solved using local search
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