Motivation

- Usually:
 - **Given:** A logical theory (set of propositions)
 - **Question:** Does a proposition logically follow from this theory?
 - **Reduction to unsatisfiability,** which is coNP-complete (complementary to NP problems)

- Sometimes:
 - **Given:** A logical theory
 - **Wanted:** Model of the theory
 - **Example:** Configurations that fulfill the constraints given in the theory
 - Can be “easier” because it is enough to find one model

The DPLL Procedure

DPLL Function

Given a set of clauses Δ defined over a set of variables Σ, return “satisfiable” if Δ is satisfiable. Otherwise return “unsatisfiable”.

1. If $\Delta = \emptyset$ return “satisfiable”
2. If $\Box \in \Delta$ return “unsatisfiable”
3. **Unit-propagation Rule:** If Δ contains a unit-clause C, assign a truth-value to the variable in C that satisfies C, simplify Δ to Δ' and return $\text{DPLL}(\Delta')$.
4. **Splitting Rule:** Select from Σ a variable v which has not been assigned a truth-value. Assign one truth value t to it, simplify Δ to Δ' and call $\text{DPLL}(\Delta')$.
 a. If the call returns “satisfiable”, then return “satisfiable”.
 b. Otherwise assign the other truth-value to v in Δ, simplify to Δ'' and return $\text{DPLL}(\Delta'')$.
Example (1)

\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]

1. Unit-propagation rule: \(c \mapsto T \)
\[\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\} \]

2. Splitting rule:

2a. \(a \mapsto F \)
\[\{b\}, \{\neg b\}\]

2b. \(a \mapsto T \)
\[\{\neg b\}\]

3a. Unit-propagation rule: \(b \mapsto T \)
\[\{\square\}\]

3b. Unit-propagation rule: \(b \mapsto F \)
\[\{\}\]

Example (2)

\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T \)
\[\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\} \]

2. Unit-propagation rule: \(b \mapsto T \)
\[\{\{a, \neg c\}, \{c\}\} \]

3. Unit-propagation rule: \(c \mapsto T \)
\[\{\{a\}\} \]

4. Unit-propagation rule: \(a \mapsto T \)
\[\{\}\]

Properties of DPLL

- DPLL is complete, correct, and guaranteed to terminate.
- DPLL constructs a model, if one exists.
- In general, DPLL requires exponential time (splitting rule!)
- DPLL is polynomial on Horn clauses, i.e., clauses with at most one positive literal

\[\neg A_1 \lor \ldots \lor \neg A_n \lor B \iff \bigwedge_i A_i \Rightarrow B \]

→ Heuristics are needed to determine which variable should be instantiated next and which value should be used.

→ In all SAT competitions so far, DPLL-based procedures have shown the best performance.

DPLL on Horn Clauses (1)

Note:

1. The simplifications in DPLL on Horn clauses always generate Horn clauses

2. A set of Horn clauses without unit clauses is satisfiable
 - All clauses have at least one negative literal
 - Assign false to all variables

3. If the first sequence of applications of the unit propagation rule in DPLL does not lead to the empty clause, a set of Horn clauses without unit clauses is generated (which is satisfiable according to 2.)
4. Although a set of Horn clauses without a unit clause is satisfiable, DPLL may not immediately recognize it.
 a. If DPLL assigns $false$ to a variable, this cannot lead to an unsatisfiable set and after a sequence of unit propagations we are in the same situation as in 4.
 b. If DPLL assigns $true$, then we may get an empty clause - perhaps after unit propagation (and have to backtrack) - or the set is still satisfiable and we are in the same situation as in 4.

In summary:
1. DPLL executes a sequence of unit propagation steps resulting in
 a. an empty clause or
 b. a set of Horn clauses without a unit clause, which is satisfiable

2. In the latter case, DPLL proceeds by choosing for one variable:
 a. $false$, which does not change the satisfiability
 b. $true$, which either
 i. leads to an immediate contradiction (after unit propagation) and backtracking or
 ii. does not change satisfiability

\rightarrow Run time is $polynomial$ in the number of variables.

How Good is DPLL in the Average Case?

- We know that SAT is NP-complete, i.e., in the worst case, it takes exponential time.
- This is clearly also true for the DPLL-procedure.
 \rightarrow Couldn’t we do better in the average case?
- For CNF-formulae in which the probability for a positive appearance, negative appearance and non-appearance in a clause is 1/3, DPLL needs on average quadratic time (Goldberg 79)!
 \rightarrow The probability that these formulae are satisfiable is, however, very high.

Phase Transitions . . .

Conversely, we can, of course, try to identify hard to solve problem instances.
Cheeseman et al. (IJCAI-91) came up with the following plausible conjecture:
All NP-complete problems have at least one order parameter and the hard to solve problems are around a critical value of this order parameter. This critical value (a phase transition) separates one region from another, such as over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton path . . . later also for other NP-complete problems.
Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92):
Clause length k is given. Choose variables for every clause k and use the complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:

Empirical Difficulty

The Davis-Putnam (DPLL) Procedure shows extreme runtime peaks at the phase transition:

Note: Hard instances can exist even in the regions of the more easily satisfiable/unsatisfiable instances!

Notes on the Phase Transition

- When the probability of a solution is close to 1 (under-constrained), there are many solutions, and the first search path of a backtracking search is usually successful.
- If the probability of a solution is close to 0 (over-constrained), this fact can usually be determined early in the search.
- In the phase transition stage, there are many near successes ("close, but no cigar")
 → (limited) possibility of predicting the difficulty of finding a solution based on the parameters
 → (search intensive) benchmark problems are located in the phase region (but they have a special structure)

Local Search Methods for Solving Logical Problems

In many cases, we are interested in finding a satisfying assignment of variables (example CSP), and we can sacrifice completeness if we can “solve” much large instances this way.

Standard process for optimization problems: Local Search

- Based on a (random) configuration
- Through local modifications, we hope to produce better configurations
 → Main problem: local maxima
Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could use the number of satisfied constraints/clauses.

But local search seems inappropriate, considering we want to find a global maximum (all constraints/clauses satisfied).

By restarting and/or injecting noise, we can often escape local maxima.

Actually: Local search performs very well for finding satisfying assignments of CNF formulae (even without injecting noise).

The Search Behavior of GSAT

- In contrast to normal local search methods, we must also allow sideways movements!
- Most time is spent searching on plateaus.

GSAT

Procedure GSAT

INPUT: a set of clauses α, Max-Flips, and Max-Tries

OUTPUT: a satisfying truth assignment of α, if found

begin

for $i := 1$ to Max-Tries

$T :=$ a randomly-generated truth assignment

for $j := 1$ to Max-Flips

if T satisfies α then **return** T

$v :=$ a propositional variable such that a change in its truth assignment gives the largest increase in the number of clauses of α that are satisfied by T

$T := T$ with the truth assignment of v reversed

end for

end for

return "no satisfying assignment found"

end

State of the Art

- SAT competitions since beginning of the 90s
- Current SAT competitions (http://www.satcompetition.org/):
 - In 2010:
 - Largest “industrial” instances: $> 1,000,000$ literals
 - Complete solvers are as good as randomized ones on handcrafted and industrial problem
Concluding Remarks

- DPLL-based SAT solvers prevail:
 - Very efficient implementation techniques
 - Good branching heuristics
 - Clause learning

- Incomplete randomized SAT-solvers
 - are good (in particular on random instances)
 - but there is no dramatic increase in size of what they can solve
 - parameters are difficult to adjust