Knowledge Representation and Reasoning

- Often, our agents need knowledge before they can start to act intelligently.
- They then also need some reasoning component to exploit the knowledge they have.
- Examples:
 - Knowledge about the important concepts in a domain.
 - Knowledge about actions one can perform in a domain.
 - Knowledge about temporal relationships between events.
 - Knowledge about the world and how properties are related to actions.

Categories and Objects

- We need to describe the objects in our world using categories.
- Necessary to establish a common category system for different applications (in particular on the web).
- There are a number of quite general categories everybody and every application uses.
The Upper Ontology: A General Category Hierarchy

Description Logics

- How to describe more specialized things?
- Use definitions and/or necessary conditions referring to other already defined concepts:
 - A parent is a human with at least one child.
- More complex description:
 - A proud-grandmother is a human, which is female with at least two children that are in turn parents whose children are all doctors.

Reasoning Services in Description Logics

- Typical questions of interest:
 - Subsumption: Determine whether one description is more general than (subsumes) the other
 - Classification: Create a subsumption hierarchy
 - Satisfiability: Is a description satisfiable?
 - Instance relationship: Is a given object instance of a concept description?
 - Instance retrieval: Retrieve all objects for a given concept description

Special Properties of Description Logics

- Semantics of description logics (DLs) can be given using ordinary PL1
- Alternatively, DLs can be considered as modal logics
- Reasoning for most DLs is much more efficient than for PL1
- Nowadays, W3C standards such as OWL (formerly DAML+OIL) are based on description logics
Logic-Based Agents That Act

function KB-AGENT(\text{percept}) \text{ returns an action}

persistent: \text{KB}, a knowledge base
\text{t}, a counter, initially 0, indicating time

\text{TELL(\text{KB, MAKE-PERCEPT-SENTENCE(percept, t)})}

\text{action} \leftarrow \text{ASK(\text{KB, MAKE-ACTION-QUERY(t)})}
\text{TELL(\text{KB, MAKE-ACTION-SENTENCE(action, t)})}
\text{t} \leftarrow \text{t} + 1
\text{return action}

Query (MAKE-ACTION-QUERY): \exists x \text{Action}(x, t)

A variable assignment for \text{x} in the WUMPUS world example should give the following answers: turn(right), turn(left), forward, shoot, grab, release, climb.

Reflex Agents

\ldots only react to percepts.

Example of a percept statement (at time 5):
Percept(stench, breeze, glitter, none, none, 5)

1. \forall b, g, u, c, t [Percept(stench, b, g, u, c, t) \Rightarrow Stench(t)]
2. \forall s, g, u, c, t [Percept(s, breeze, g, u, c, t) \Rightarrow Breeze(t)]
3. \forall s, b, g, u, c, t [Percept(s, b, glitter, u, c, t) \Rightarrow AtGold(t)]

\ldots

2. Step: Choice of action
\forall t [AtGold(t) \Rightarrow Action(grab, t)]

\ldots

Note: Our reflex agent does not know when it should climb out of the cave and cannot avoid an infinite loop.

Model-Based Agents

\ldots have an internal model
- of all basic aspects of their environment,
- of the executability and effects of their actions,
- of further basic laws of the world, and
- of their own goals.

Important aspect: How does the world change?
→ Situation calculus: (McCarthy, 63).

Situation Calculus

- A way to describe \text{dynamic worlds} with PL1.
- \text{States} are represented by terms.
- The world is in state \text{s} and can only be altered through the execution of an \text{action}: do(a, s) is the resulting situation, if \text{a} is executed.
- Actions have \text{preconditions} and are described by their \text{effects}.
- Relations whose truth value changes over time are called \text{fluenfs}. Represented through a predicate with two arguments: the fluent and a state term. For example, At(x, s) means, that in situation \text{s}, the agent is at position \text{x}. Holding(y, s) means that in situation \text{s}, the agent holds object \text{y}.
- \text{Atemporal} or \text{eternal} predicates, e.g., Portable(gold).
Example: WUMPUS-World

Let s_0 be the initial situation and

$s_1 = \text{do}(\text{forward}, s_0)$
$s_2 = \text{do}(\text{turn(right)}, s_1)$
$s_3 = \text{do}(\text{forward}, s_2)$

Description of Actions

Preconditions: In order to pick something up, it must be both present and portable:

$$\forall x, s[\text{Poss(grab}(x), s) \iff \text{Present}(x, s) \land \text{Portable}(x)]$$

In the WUMPUS-World:

$$\text{Portable}(\text{gold}), \forall s[\text{AtGold}(s) \Rightarrow \text{Present}(\text{gold}, s)]$$

Positive effect axiom:

$$\forall x, s[\text{Poss(grab}(x), s) \Rightarrow \text{Holding}(x, \text{do(grab}(x), s))]$$

Negative effect axiom:

$$\forall x, s[\neg \text{Holding}(x, \text{do(release}(x), s))]$$

The Frame Problem

We had: $\text{Holding(\text{gold}, s_0)}$.

Following situation: $\neg \text{Holding(\text{gold}, \text{do(release}(\text{gold}), s_0))}$?

We had: $\neg \text{Holding(\text{gold}, s_0)}$.

Following situation: $\neg \text{Holding(\text{gold}, \text{do(turn(right)}, s_0))}$?

- We must also specify which fluents remain unchanged!
- The frame problem: Specification of the properties that do not change as a result of an action.

\rightarrow Frame axioms must also be specified.

Number of Frame Axioms

$$\forall a, x, s[\text{Holding}(x, s) \land (a \neq \text{release}(x)) \Rightarrow \text{Holding}(x, \text{do}(a, s))]$$

$$\forall a, x, s[\neg \text{Holding}(x, s) \land \{a \neq \text{grab}(x)\} \lor \neg \text{Poss(grab}(x), s)]$$

$$\Rightarrow \neg \text{Holding}(x, \text{do}(a, s))]$$

Can be very expensive in some situations, since $O(|F| \times |A|)$ axioms must be specified, F being the set of fluents and A being the set of actions.
Successor-State Axioms

A more elegant way to solve the frame problem is to fully describe the successor situation:

true after action ⇔ [action made it true or, already true and the action did not falsify it]

Example for *grab*:

\[\forall a, x, s [\text{Holding}(x, do(a, s)) \iff \{ (a = \text{grab}(x) \land \text{Poss}(a, s)) \lor (\text{Holding}(x, s) \land a \neq \text{release}(x)) \}] \]

Can also be automatically compiled by only giving the effect axioms (and then applying *explanation closure*). Here we suppose that only certain effects can appear.

Limits of this Version of Situation Calculus

- No explicit time. We cannot discuss how long an action will require, if it is executed.
- Only one agent. In principle, however, several agents can be modeled.
- No parallel execution of actions.
- Discrete situations. No continuous actions, such as moving an object from A to B.
- Closed world. Only the agent changes the situation.
- Determinism. Actions are always executed with absolute certainty.

→ Nonetheless, sufficient for many situations.

Qualitative Descriptions of Temporal Relationships

We can describe the temporal occurrence of event/actions:

- absolute by using a date/time system
- relative with respect to other event occurrences
- quantitatively, using time measurements (5 secs)
- qualitatively, using comparisons (before/overlaps)

Allen’s Interval Calculus

- Allen proposed a calculus about relative order of *time intervals*
- Allows us to describe, e.g.,
 - Interval \(I \) occurs before interval \(J \)
 - Interval \(J \) occurs before interval \(K \)
- and to conclude
 - Interval \(I \) occurs before interval \(K \)

→ 13 jointly exhaustive and pair-wise disjoint relations between intervals
Allen’s 13 Interval Relation

Examples

- Using Allen’s relation system one can describe temporal configurations as follows:
 \[X < Y, Y \circ Z, Z > X \]

- One can also use disjunctions (unions) of temporal relations:
 \[X(<, m)Y, Y(o, s)Z, Z > X \]

Reasoning in Allen’s Relations System

- How do we reason in Allen’s system
 - Checking whether a set of formulae is satisfiable
 - Checking whether a temporal formula follows logically

 → Use a constraint propagation technique for CSPs with infinite domains (3-consistency), based on composing relations

Constraint Propagation

\[
\begin{align*}
X < Y & \quad s \quad Z = X \quad Z \\
X < Y \circ & \quad Z = X \quad Z \\
X m Y & \quad s \quad Z = X \quad Z \\
X m Y \circ & \quad Z = X \quad Z \\
\end{align*}
\]
In many (but not all) cases, full inference in PL1 is simply too slow (and therefore too unreliable).

Often, special (logic-based) representational formalisms are designed for specific applications, for which specific inference procedures can be used. Examples:

- Description logics for representing conceptual knowledge.
- James Allen’s time interval calculus for representing qualitative temporal knowledge.
- Planning: Instead of situation calculus, this is a specialized calculus (STRIPS) that allows us to address the frame problem.

→ Generality vs. efficiency
→ In every case, logical semantics is important!