
Foundations of Artificial Intelligence
11. Action Planning

Solving Logically Specified Problems using a General Problem Solver

Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller

Albert-Ludwigs-Universität Freiburg

June 22, 2012

Contents

1 What is Action Planning?

2 Planning Formalisms

3 Basic Planning Algorithms

4 Computational Complexity

5 Current Algorithmic Approaches

6 Summary

(University of Freiburg) Foundations of AI June 22, 2012 2 / 62

Planning

Planning is the process of generating (possibly partial)
representations of future behavior prior to the use of such plans to
constrain or control that behavior.
The outcome is usually a set of actions, with temporal and other
constraints on them, for execution by some agent or agents.
As a core aspect of human intelligence, planning has been studied
since the earliest days of AI and cognitive science. Planning
research has led to many useful tools for real-world applications,
and has yielded significant insights into the organization of behavior
and the nature of reasoning about actions. [Tate 1999]

(University of Freiburg) Foundations of AI June 22, 2012 3 / 62

Planning Tasks

Given a current state, a set of possible actions, a specification of the
goal conditions, which plan transforms the current state into a goal
state?

(University of Freiburg) Foundations of AI June 22, 2012 4 / 62

Another Planning Task: Logistics

Given a road map, and a number of trucks and airplanes, make a plan
to transport objects from their start to their goal destinations.

(University of Freiburg) Foundations of AI June 22, 2012 5 / 62

Action Planning is not . . .

Problem solving by search, where we describe a problem by a state
space and then implement a program to search through this space

in action planning, we specify the problem declaratively (using logic) and
then solve it by a general planning algorithm

Program synthesis, where we generate programs from
specifications or examples

in action planning we want to solve just one instance and we have only
very simple action composition (i.e., sequencing, perhaps conditional
and iteration)

Scheduling, where all jobs are known in advance and we only have
to fix time intervals and machines

instead we have to find the right actions and to sequence them

Of course, there is interaction with these areas!

(University of Freiburg) Foundations of AI June 22, 2012 6 / 62

Domain-Independent Action Planning

Start with a declarative specification of the planning problem
Use a domain-independent planning system to solve the planning
problem
Domain-independent planners are generic problem solvers
Issues:

Good for evolving systems and those where performance is not critical
Running time should be comparable to specialized solvers
Solution quality should be acceptable
. . . at least for all the problems we care about

(University of Freiburg) Foundations of AI June 22, 2012 7 / 62

Planning as Logical Inference

Planning can be elegantly formalized with the help of the situation
calculus.

Initial state:
At(truck1, loc1, s0) ∧ At(package1, loc3, s0)

Operators (successor-state axioms):
∀a, s, l, p, t At(t, p,Do(a, s))⇔ {a = Drive(t, l, p) ∧ Poss(Drive(t, l, p), s)
∨At(t, p, s) ∧ (a 6= ¬Drive(t, p, l, s) ∨ ¬Poss(Drive(t, p, l), s))}

Goal conditions (query):
∃s At(package1, loc2, s)

The constructive proof of the existential query (computed by a
automatic theorem prover) delivers a plan that does what is desired.
Can be quite inefficient!

(University of Freiburg) Foundations of AI June 22, 2012 8 / 62

The Basic STRIPS Formalism

STRIPS: STanford Research Institute Problem Solver

S is a first-order vocabulary (predicate and function symbols) and
ΣS denotes the set of ground atoms over the signature (also called
facts or fluents).
ΣS,V is the set of atoms over S using variable symbols from the set
of variables V.
A first-order STRIPS state S is a subset of ΣS denoting a complete
theory or model (using CWA).
A planning task (or planning instance) is a 4-tuple
Π = 〈S,O, I,G〉, where

O is a set of operator (or action types)
I ⊆ ΣS is the initial state
G ⊆ ΣS is the goal specification

No domain constraints (although present in original formalism)

(University of Freiburg) Foundations of AI June 22, 2012 9 / 62

Operators, Actions & State Change

Operator:
o = 〈para, pre, eff 〉,

with para ⊆ V, pre ⊆ ΣS,V, eff ⊆ ΣS,V ∪ ¬ΣS,V (element-wise
negation) and all variables in pre and eff are listed in para.
Also: pre(o), eff (o).
eff + = positive effect literals
eff− = negative effect literals
Operator instance or action: Operator with empty parameter list
(instantiated schema!)
State change induced by action:

App(S, o) =


S ∪ eff +(o)− ¬eff−(o) if pre(o) ⊆ S &

eff (o) is cons.
undefined otherwise

(University of Freiburg) Foundations of AI June 22, 2012 10 / 62

Example Formalization: Logistics

Logical atoms: at(O,L), in(O,V), airconn(L1,L2), street(L1,L2),
plane(V), truck(V)

Load into truck: load
Parameter list: (O,V,L)
Precondition: at(O,L), at(V,L), truck(V)
Effects: ¬at(O,L), in(O,V)

Drive operation: drive
Parameter list: (V,L1,L2)
Precondition: at(V,L1), truck(V), street(L1,L2)
Effects: ¬at(V,L1), at(V,L2)

. . .
Some constant symbols: v1, s, t with truck(v1) and street(s, t)

Action: drive(v1, s, t)

(University of Freiburg) Foundations of AI June 22, 2012 11 / 62

Plans & Successful Executions

A plan ∆ is a sequence of actions
State resulting from executing a plan:

Res(S, 〈〉) = S

Res(S, (o; ∆)) =


Res(App(S, o),∆) if App(S, o)

is defined
undefined otherwise

Plan ∆ is successful or solves a planning task if Res(I,∆) is
defined and G ⊆ Res(I,∆).

(University of Freiburg) Foundations of AI June 22, 2012 12 / 62

A Small Logistics Example

Initial state: S =

{
at(p1, c), at(p2, s), at(t1, c),
at(t2, c), street(c, s), street(s, c)

}

Goal: G =
{

at(p1, s), at(p2, c)
}

Successful plan: ∆ = 〈load(p1, t1, c), drive(t1, c, s),
unload(p1, t1, s), load(p2, t1, s),
drive(t1, s, c), unload(p2, t1, c)〉

Other successful plans are, of course, possible

(University of Freiburg) Foundations of AI June 22, 2012 13 / 62

Simplifications: DATALOG- and
Propositional STRIPS

STRIPS as described above allows for unrestricted first-order terms,
i.e., arbitrarily nested function terms

→ Infinite state space
Simplification: No function terms (only 0-ary = constants)

→ DATALOG-STRIPS
Simplification: No variables in operators (= actions)

→ Propositional STRIPS
Propositional STRIPS used in planning algortihms nowadays (but
specification is done using DATALOG-STRIPS)

(University of Freiburg) Foundations of AI June 22, 2012 14 / 62

Beyond STRIPS

Even when keeping all the restrictions of classical planning, one can
think of a number of extensions of the planning language.

General logical formulas as preconditions: Allow all Boolean
connectors and quantification
Conditional effects: Effects that happen only if some additional
conditions are true. For example, when pressing the accelerator
pedal, the effects depends on which gear has been selected (no,
reverse, forward).
Multi-valued state variables: Instead of 2-valued Boolean variables,
multi-valued variables could be used
Numerical resources: Resources (such as fuel or time) can be
effected and be used in preconditions
Durative actions: Actions can have duration and can be executed
concurrently
Axioms/Constraints: The domain is not only described by operators,
but also by additional laws

(University of Freiburg) Foundations of AI June 22, 2012 15 / 62

PDDL: The Planning Domain Description Language

Since 1998, there exists a bi-annual scientific competition for action
planning systems.
In order to have a common language for this competition, PDDL has
been created (originally by Drew McDermott)
Meanwhile, version 3.2 (IPC-2011) with most of the features
mentioned.
Sort of standard language by now.

(University of Freiburg) Foundations of AI June 22, 2012 16 / 62

PDDL Logistics Example

(define (domain logistics)
(:types truck airplane - vehicle

package vehicle - physobj
airport location - place
city place physobj - object)

(:predicates (in-city ?loc - place ?city - city)
(at ?obj - physobj ?loc - place)
(in ?pkg - package ?veh - vehicle))

(:action LOAD-TRUCK
:parameters (?pkg - package ?truck - truck ?loc - place)
:precondition (and (at ?truck ?loc) (at ?pkg ?loc))
:effect (and (not (at ?pkg ?loc)) (in ?pkg ?truck)))

. . .)

(University of Freiburg) Foundations of AI June 22, 2012 17 / 62

Planning Problems as Transition Systems

We can view planning problems as searching for goal nodes in a
large labeled graph (transition system)
Nodes are defined by the value assignment to the fluents = states
Labeled edges are defined by actions that change the appropriate
fluents
Use graph search techniques to find a (shortest) path in this graph!
Note: The graph can become huge: 50 Boolean variables lead to 250

= 1015 states
→ Create the transition system on the fly and visit only the parts that

are necessary

(University of Freiburg) Foundations of AI June 22, 2012 18 / 62

Transition System: Searching Through the State
Space

X
a

a

aa

b ba

a a

b

b

b

A B C

D
E F

G H I

goal states

initial state

(University of Freiburg) Foundations of AI June 22, 2012 19 / 62

Progression Planning: Forward Search

Search through transition system starting at initial state
1 Initialize partial plan ∆ := 〈 〉 and start at the unique initial state I and

make it the current state S
2 Test whether we have reached a goal state already: G ⊆ S? If so,

return plan ∆.
3 Select one applicable action oi non-deterministically and

compute successor state S := App(S, oi),
extend plan ∆ := 〈∆, oi〉, and continue with step 2.

Instead of non-deterministic choice use some search strategy.
Progression planning can be easily extended to more expressive
planning languages

(University of Freiburg) Foundations of AI June 22, 2012 20 / 62

Progression Planning: Example

S = {a, b, c, d},
O = { o1 = 〈∅, {a, b}, {¬b, c}〉,

o2 = 〈∅, {a, b}, {¬a,¬b, d}〉,
o3 = 〈∅, {c}, {b, d}〉,

I = {a, b}
G = {b, d}

o3o1

o2

{d}

{a,b} {a,c} {a,b,c,d}

G={b,d}

(University of Freiburg) Foundations of AI June 22, 2012 21 / 62

Regression Planning: Backward Search

Search through transition system starting at goal states. Consider sets
of states, which are described by the atoms that are necessarily true in
them

1 Initialize partial plan ∆ := 〈 〉 and set S := G
2 Test whether we have reached the unique initial state already:

I ⊇ S? If so, return plan ∆.
3 Select one action oi non-deterministically which does not make

(sub-)goals false (S ∩ ¬eff−(oi) = ∅) and
compute the regression of the description S through oi:

S := S− eff+(oi) ∪ pre(oi)

extend plan ∆ := 〈oi,∆〉, and continue with step 2.

Instead of non-deterministic choice use some search strategy
Regression becomes much more complicated, if e.g. conditional
effects are allowed. Then the result of a regression can be a general
Boolean formula

(University of Freiburg) Foundations of AI June 22, 2012 22 / 62

Regression Planning: Example

S = {a, b, c, d, e},
O = { o1 = 〈∅, {b}, {¬b, c}〉,

o2 = 〈∅, {e}, {b}〉,
o3 = 〈∅, {c}, {b, d,¬e}〉,

I = {a, b}
G = {b, d}

o3o1 {b,d}

o2

{c}{b}

I={a,b}

{d,e}
(University of Freiburg) Foundations of AI June 22, 2012 23 / 62

Other Types of Search

Of course, other types of search are possible.
Change perspective: Do not consider the transition system as the
space we have to explore, but consider the search through the
space of (incomplete) plans:

Progression search: Search through the space of plan prefixes
Regression search: Search through plan suffixes

Partial order planning:
Search through partially ordered plans by starting with the empty plan
and trying to satisfy (sub-)goals by introducing new actions (or using old
ones)
Make ordering choices only when necessary to resolve conflicts

(University of Freiburg) Foundations of AI June 22, 2012 24 / 62

The Planning Problem – Formally

Definition (Plan existence problem (PLANEX))

Instance: Π = 〈S,O, I,G〉.
Question: Does there exist a plan ∆ that solves Π, i.e., Res(I,∆) ⊇ G?

Definition (Bounded plan existence problem (PLANLEN))

Instance: Π = 〈S,O, I,G〉 and a positive integer n.
Question: Does there exist a plan ∆ of length n or less that solves Π?

From a practical point of view, also PLANGEN (generating a plan that
solves Π) and PLANLENGEN (generating a plan of length n that solves
Π) and PLANOPT (generating an optimal plan) are interesting (but at
least as hard as the decision problems).

(University of Freiburg) Foundations of AI June 22, 2012 25 / 62

Basic STRIPS with First-Order Terms

The state space for STRIPS with general first-order terms is infinite
We can use function terms to describe (the index of) tape cells of a
Turing machine
We can use operators to describe the Turing machine control
The existence of a plan is then equivalent to the existence of a
successful computation on the Turing machine
PLANEX for STRIPS with first-order terms can be used to decide
the Halting problem

Theorem
PLANEX for STRIPS with first-order terms is undecidable.

(University of Freiburg) Foundations of AI June 22, 2012 26 / 62

Propositional STRIPS

Theorem
PLANEX is PSPACE-complete for propositional STRIPS.

→ Membership follows because we can successively guess operators
and compute the resulting states (needs only polynomial space)

→ Hardness follows using again a generic reduction from TM
acceptance. Instantiate polynomially many tape cells with no
possibility to extend the tape (only poly. space, can all be generated
in poly. time)
PLANLEN is also PSPACE-complete (membership is easy, hardness
follows by setting k = 2|Σ|)

(University of Freiburg) Foundations of AI June 22, 2012 27 / 62

Restrictions on Plans

If we restrict the length of the plans to be only polynomial in the
size of the planning task, PLANEX becomes NP-complete
Similarly, if we use a unary representation of the natural number k,
then PLANLEN becomes NP-complete

→ Membership obvious (guess & check)
→ Hardness by a straightforward reduction from SAT or by a generic

reduction.
One source of complexity in planning stems from the fact that plans
can become very long
We are only interested in short plans!
We can use methods for NP-complete problems if we are only
looking for “short” plans.

(University of Freiburg) Foundations of AI June 22, 2012 28 / 62

Propositional, Precondition-free STRIPS with Negative
Preconditions

Theorem
The problem of deciding plan existence for precondition-free,
propositional STRIPSis in P.

Proof.
Do a backward greedy plan generation. Choose all operators that
make some goals true and that do not make any goals false. Remove
the satisfied goals and the operators from further consideration and
iterate the step. Continue until all remaining goals are satisfied by the
initial state (succeed) or no more operators can be applied (fail).

(University of Freiburg) Foundations of AI June 22, 2012 29 / 62

Propositional, Precondition-free STRIPS
and Plan Length

Theorem
The problem of deciding whether there exists a plan of length k for
precondition-free, propositional STRIPSis NP-complete, even if all
effects are positive.

Proof.
Membership in NP is obvious. Hardness follows from a straightforward
reduction from the MINIMUM-COVER problem [Garey & Johnson 79]:

Given a collection C of subsets of a finite set S and a positive integer k, does
there exist a cover for S of size k or less, i.e., a subset C′ ⊆ C such that⋃

C′ ⊇ S and |C′| ≤ k?

We will use this result later

(University of Freiburg) Foundations of AI June 22, 2012 30 / 62

Current Approaches

In 1992, Kautz and Selman introduced the idea of planning as
satisfiability

→ Encode possible k-step plans as Boolean formulas and use an
iterative deepening search approach
In 1995, Blum and Furst came up with the planning graph approach

→ iterative deepening approach that prunes the search space using a
graph-structure
In 1996, McDermott proposed to use (again) an heuristic estimator
to control the selection of actions, similar to the original GPS idea
Geffner (1997) followed up with a propositional, simplified version
(HSP) and Hoffmann & Nebel (2001) with an extended version
integrating strong pruning (FF)

→ Heuristic planners seem to be the most efficient non-optimal
planners these days

(University of Freiburg) Foundations of AI June 22, 2012 31 / 62

Iterative Deepening Search

1 Initialize k = 0
2 Try to construct a plan of length k exhaustively
3 If unsuccessful, increment k and goto step 2.
4 Otherwise return plan

Finds shortest plan
Needs to prove that there are no plans of length 1, 2, . . . k − 1 before
a plan of length k is produced.

(University of Freiburg) Foundations of AI June 22, 2012 32 / 62

Planning – Logically

Traditionally, planning has been viewed as a special kind of
deductive problem
Given

a formula describing possible state changes
a formula describing the initial state and a formula characterizing the
goal conditions
try to prove the existential formula there exists a sequence of state
changes transforming the initial state into the final one

→ Since the proof is done constructively, the plan is constructed as a
by-product

(University of Freiburg) Foundations of AI June 22, 2012 33 / 62

Planning as Satisfiability

Take the dual perspective: Consider all models satisfying a
particular formula as plans

→ Similar to what is done in the generic reduction that shows
NP-hardness of SAT (simulation of a computation on a Turing
machine)
Build formula for k steps, check satisfiability, and increase k until a
satisfying assignment is found
Use time-indexed propositional atoms for facts and action
occurrences
Formulate constraints that describe what it means that a plan is
successfully executed:

Only one action per step
If an action is executed then their preconditions were true and the effects
become true after the execution
If a fact is not affected by an action, it does not change its value (frame
axiom)

(University of Freiburg) Foundations of AI June 22, 2012 34 / 62

Planning as Satisfiability: Example

Fact atoms: at(p1, s)i, at(p1, c)i, at(t1, s)i, at(t1, c)i, in(p1, t1)i

Action atoms: move(t1, s, c)i,move(t1, c, s)i, load(p1, s)i, . . .

Only one action:
∧

i,x,y ¬(unload(t1, p1, x)i ∧ load(p1, t1, y)i) ∧ . . .

Preconditions:
∧

i,x(unload(p1, t1, x)i → in(p1, t1)i−1) ∧ . . .

Effects:
∧

i,x(unload(p1, t1, x)i → ¬in(p1, t1)i ∧ at(p1, x)i) ∧ . . .

Frame axioms:∧
i,x,y,z(¬move(t1, x, y)i → (at(t1, z)i−1 ↔ at(t1, z)i)) ∧ . . .

A satisfying truth assignment corresponds to a plan (use the true
action atoms)

(University of Freiburg) Foundations of AI June 22, 2012 35 / 62

Advantages of the Approach

Has a more flexible search strategy
Can make use of SAT solver technology
. . . and automatically profits from advances in this area
Can express constraints on intermediate states
Can use logical axioms to express additional constraints, e.g., to
prune the search space

(University of Freiburg) Foundations of AI June 22, 2012 36 / 62

Planning Based on Planning Graphs

Main ideas:
Describe possible developments in a graph structure (use only
positive effects)

Layered graph structure with fact and action levels
Fact level (F level): positive atoms (the first level being the initial state)
Action level (A level): actions that can be applied using the atoms in the
previous fact level
Links: precondition and effect links between the two layers

Record conflicts caused by negative effects and propagate them
Extract a plan by choosing only non-conflicting parts of the graph
(allowing for parallel actions)
Parallelism (for non-conflicting actions) is a great boost for the
efficiency.

(University of Freiburg) Foundations of AI June 22, 2012 37 / 62

Example Graph

I = {at(p1, c), at(p2, s), at(t1, c)},
G = {at(p1, s), in(p2, t1)}
All applicable actions are included
In order to propagate unchanged properties, use noop action, denoted
by *
Expand graph as long as not all goal atoms are in the fact level

*

at(p1,c) in(p1,t1) at(p2,s) at(t1,c) at(t1,s)in(p2,t1)at(p1,s)

* *load unload* load * drive drive *

* * *

at(p1,c) in(p1,t1) at(p2,s) at(t1,c) at(t1,s)in(p2,t1)at(p1,s)

* *load unload load * drive drive *

at(p2,c)

unload

at(p1,c) at(p2,s) at(t1,c)

drive(...)

at(p2,s)at(p1,c) at(t1,c)in(p1,t1) at(t1,s)

* *load

F0

A1

F1

A2

F2

A3

F3

(University of Freiburg) Foundations of AI June 22, 2012 38 / 62

Plan Extraction

Start at last fact level with goal atoms
Select a minimal set of non-conflicting actions that generate the goal
atoms

Two actions are conflicting if they have complementary effects or if one
action deletes or asserts a precondition of the other action

Use the preconditions of the selected actions as (sub-)goals on the
next lower fact level
Backtrack if no non-conflicting choice is possible
If all possibilities are exhausted, the graph has to be extended by
another level.

(University of Freiburg) Foundations of AI June 22, 2012 39 / 62

Extracting From the Example Graph

Final selection

*

at(p1,c) at(p2,s) at(t1,c)

drive

at(p2,s)at(p1,c) at(t1,c)in(p1,t1) at(t1,s)

* *load

F0

A1

F1

A2

F2

A3

F3at(p1,c) in(p1,t1) at(p2,s) at(t1,c) at(t1,s)at(p1,s)

* *load unload load * drive drive *

at(p2,c)

unload

at(p1,c) at(t1,c)in(p2,t1)at(p1,s)

* *load unload* load * drive drive *

*

at(t1,s)

in(p2,t1)

in(p1,t1) at(p2,s)

**

(University of Freiburg) Foundations of AI June 22, 2012 41 / 62

Propagation of Conflict Information: Mutex pairs

Idea: Try to identify as many pairs of conflicting choices as possible in
order to prune the search space

Any pair of conflicting actions is mutex (mutually exclusive)
A pair of atoms is mutex at F-level i > 0 if all ways of making them
true involve actions that are mutex at the A-level i

A pair of actions is also mutex if their preconditions are
. . .

→ Actions that are mutex cannot be executed at the same time
→ Facts that are mutex cannot be both made true at the same time

Never choose mutex pairs during plan extraction
Plan graph search and mutex propagation make planning 1–2 orders
of magnitude more efficient than conventional methods

(University of Freiburg) Foundations of AI June 22, 2012 42 / 62

Satisfiability-Based Planning based on Planning
Graphs

Use planning graph in order to generate Boolean formula
The initial facts in layer F0 and the goal atoms in layer Fk are true
Each fact in layer Fi implies the disjunction of the actions having the fact
as an effect
Each action implies the conjunction of the preconditions of the action
Conflicting actions cannot be executed at the same time.

Turns out to be empirically more efficient than the earlier coding
(because plans can be much shorter)
Other codings are possible, e.g., purely action- or state-based
codings

(University of Freiburg) Foundations of AI June 22, 2012 43 / 62

Disadvantages of Iterative Deepening Planners

If a domain contains many symmetries, proving that there is no plan
up to length of k − 1 can be very costly.
Example: Gripper domain:

there is one robot with two grippers
there is room A that contains n balls
there is another room B connected to room A
the goal is to bring all balls to room B

Obviously, the plan must have a length of at least n/2, but ID
planners will try out all permutations of actions for shorter plans
before noting this.
Give better guidance

(University of Freiburg) Foundations of AI June 22, 2012 44 / 62

Heuristic Search Planning

Use an heuristic estimator in order to select the next action or state
Depending on the search scheme and the heuristic, the plan might
not be the shortest one

→ It is often easier to go for sub-optimal solutions (remember Logistics)

Heuristic search planner vs. iterative deepening on Gripper

(University of Freiburg) Foundations of AI June 22, 2012 45 / 62

Design Space

One can use progression or regression search, or even search in
the space of incomplete partially ordered plans
One can use local or global, systematic search strategies
One can use different heuristics, which can be compared along the
dimension of being

efficiently computable, i.e., should be computable in poly. time
informative, i.e., should make reasonable distinctions between search
nodes
and admissible, i.e., should underestimate the real costs (useful in A∗

search).

(University of Freiburg) Foundations of AI June 22, 2012 46 / 62

Local Search

Consider all states that are reachable by executing one action
Try to improve the heuristic value
Hill climbing: Select the successor with the minimal heuristic value
Enforced hill climbing: Do a breadth-first search until you find a node
that has a better evaluation than the current one.

→ Note: Because these algorithms are not systematic, they cannot be
used to prove the absences of a solution

(University of Freiburg) Foundations of AI June 22, 2012 47 / 62

Global Search

Maintain a list of open nodes and select always the one which is
best according to the heuristic
Weighted A∗: combine estimate h(S) for state S and costs g(S) for
reaching S using the weight w with 0 ≤ w ≤ 1:

f (S) = w ∗ g(S) + (1− w) ∗ h(S).

If w = 0.5, we have ordinary A∗, i.e., the algorithm finds the shortest
solution provided h is admissible, i.e., the heuristics never
overestimates
If w < 0.5, the algorithm is greedy
If w > 0.5, the algorithm behaves more like best-first search

(University of Freiburg) Foundations of AI June 22, 2012 48 / 62

Deriving Heuristics: Relaxations

General principle for deriving heuristics:
Define a simplification (relaxation) of the problem and take the difficulty
of a solution for the simplified problem as an heuristic estimator

Example: straight-line distance on a map to estimate the travel
distance
Example: decomposition of a problem, where the components are
solved ignoring the interactions between the components, which
may incur additional costs
In planning, one possibility is to ignore negative effects

(University of Freiburg) Foundations of AI June 22, 2012 49 / 62

Ignoring Negative Effects: Example

In Logistics: The negative effects in load and drive are ignored:
Simplified load operation: load(O,V,P)
Precondition: at(O,P), at(V,P), truck(V)
Effects: ¬at(O,P), in(O,V)

After loading, the package is still at the place and also inside the
truck
Simplified drive operation: drive(V,P1,P2)
Precondition: at(V,P1), truck(V), street(P1,P2)
Effects: ¬at(V,P1), at(V,P2)

After driving, the truck is in two places!
→ We want the length of the shortest relaxed plan h+(s)

How difficult is monotonic planning?

(University of Freiburg) Foundations of AI June 22, 2012 50 / 62

Monotonic Planning

Assume that all effects are positive
finding some plan is easy:

Iteratively, execute all actions that are executable and have not all their
effects made true yet
If no action can be executed anymore, check whether the goal is
satisfied
If not, there is no plan
Otherwise, we have a plan containing each action only once

Finding the shortest plan: easy or difficult?
PLANLEN for precondition-free operators with only positive effects is
NP-complete
Consider approximations to h+.

(University of Freiburg) Foundations of AI June 22, 2012 51 / 62

The HSP Heuristic

The first idea of estimating the distance to the goal for monotonic planning might
be to count the number of unsatisfied goals atoms
Neither admissible nor very informative
Estimate the costs of making an atom p true in state S:

h(S, p) =

{
0 if p ∈ S
mina∈O,p∈eff+(a)(1 + maxq∈pre(a) h(S, q)) otherwise

Estimate distance from S to S′: h(S, S′) = maxp∈S′h(S, p)
Is admissible, because only the longest chain is taken, but it is not very
informative
Use

∑
instead of max (this is the HSP heuristics)

Is not admissible, but more informative. However, it ignores positive interactions!
→ Can be computed by using a dynamic programming technique

(University of Freiburg) Foundations of AI June 22, 2012 52 / 62

The FF Heuristic

Use the planning graph method to construct a plan for the monotone
planning problem
Can be done in poly. time (and is empirically very fast)
Generates an optimal parallel plan that might not be the best
sequential plan

→ The number of actions in this plan is used as the heuristic estimate
(more informative than the parallel plan length, but not admissible)
Appears to be a good approximation

(University of Freiburg) Foundations of AI June 22, 2012 53 / 62

The FF System

FF (Fast Forward) is a heuristic search planner developed in
Freiburg
Heuristic: Goal distances are estimated by solving a relaxation of
the task in every search state (ignoring negative effects) – the
solution is not minimal, however!
Search strategy: Enforced hill-climbing
Pruning: Only a fraction of each states successors are considered:
only thosesuccessors that would be generated by the relaxed
solution – with a fall-back strategy considering all successors if we
are unsuccessful
FF is one of the fastest planners around

→ Meanwhile, faster systems such as FDD and LAMA, also designed
in our group

(University of Freiburg) Foundations of AI June 22, 2012 54 / 62

Runtime: Logistics in the 2000 competition

0.1

1

10

100

1000

10000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

se
c.

problem size

FF
HSP2

System-R
GRT
Mips

STAN

(University of Freiburg) Foundations of AI June 22, 2012 55 / 62

Solution Quality: Logistics in the 2000 competition

50

100

150

200

250

300

350

400

450

500

550

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

#s
te

ps

problem size

FF
HSP2

System-R
GRT
Mips

STAN

(University of Freiburg) Foundations of AI June 22, 2012 56 / 62

FF – Why is it so Fast?

FF was the fastest planner at the competition in 2000 across all
planning domains – and still is a benchmark system
Further experiments showed that this extends to most other
planning domains in the literature
What is the search space topology under the used heuristic
estimator?
Problematical issues in the search space topology:

local minima
benches
dead ends

(University of Freiburg) Foundations of AI June 22, 2012 57 / 62

Local Minima

We have to go “upwards” before we can leave

n n−1

n−1

n−1 2

2

2 1

1

0

Exit

Maximal exit distance

(University of Freiburg) Foundations of AI June 22, 2012 58 / 62

Plateaus

All neighboring states look the same

n

n

n

n

Exit

n

n−1 0

Maximal exit distance

(University of Freiburg) Foundations of AI June 22, 2012 59 / 62

Dead Ends

There is no path to a solution

n−1

n−1 2

2 1

1

0

n oooo

unrecognized

recognized

(University of Freiburg) Foundations of AI June 22, 2012 60 / 62

Classification of Benchmark Domains

These properties have been analytically proven for h+, but apply
empirically also to the FF heuristic

(University of Freiburg) Foundations of AI June 22, 2012 61 / 62

Summary

Rational agents need to plan their course of action
In order to describe planning tasks in a domain-independent,
declarative way, one needs planning formalisms
Basic STRIPS is a simple planning formalism, where actions are
described by their preconditions in form of a conjunction of atoms and
the effects are described by a list of literals that become true and false
PDDL is the current “standard language” that has been developed in
connection with the international planning competition
Basic planning algorithms search through the space created by the
transition system or through the plan space.
Planning with STRIPS using first-order terms is undecidable
Planning with propositional STRIPS is PSPACE-complete
Since 1992, we have reasonably efficient planning method for
propositional, classical STRIPS planning

planning as satisfiability
the planning graph method
heuristic search planning (best method for non-optimal planning)

(University of Freiburg) Foundations of AI June 22, 2012 62 / 62

	Contents
	What is Action Planning?
	Planning
	Example Planning Tasks
	Related Problems

	Planning Formalisms
	Domain-Independent Action Planning
	Planning in the situation calculus
	STRIPS
	Executing a Plan
	Simplifications
	Going Beyond STRIPS

	Basic Planning Algorithms
	State-Space Exploration
	Progression Planning: Forward Search
	Regression Planning: Backward Search
	Other Types of Search

	Computational Complexity
	The Planning Problem – Formally
	Planning with First-Order Terms
	PSPACE-Completeness of Propositional STRIPS
	Restrictions on Plans
	Restrictions on Operators

	Current Algorithmic Approaches
	Iterative Deepening Planning
	Planning as Satisfiability
	Plangraph-Based Planning
	Heuristic Search Planning
	Search Strategies
	Heuristics
	The FF System
	The Topology of the Search Space

	Summary

