Bayes' Rule Example

Cyrill Stachniss

May 4, 2012

1 What does the test t for an illness i tell me?

Given we have:

- 1% of the population is ill: $p(i)=0.01$
- Given an ill person, the test is positive in 90% of the cases: $p(t \mid i)=0.9$
- Given a person that is not ill, the test is positive in 20% of the cases: $p(t \mid \neg i)=0.2$

What is the probability of being ill given a positive test?

$$
\begin{align*}
p(i \mid t) & =\frac{p(t \mid i) p(i)}{p(t)} \tag{1}\\
& =\frac{p(t \mid i) p(i)}{\sum_{i} p(t \mid i) p(i)} \tag{2}\\
& =\frac{p(t \mid i) p(i)}{p(t \mid i) p(i)+p(t \mid \neg i) p(\neg i)} \tag{3}\\
& =\frac{p(t \mid i) p(i)}{p(t \mid i) p(i)+p(t \mid \neg i)(1-p(i))} \tag{4}\\
& =\frac{0.9 \times 0.01}{0.9 \times 0.01+0.2 \times 0.99} \tag{5}\\
& =\frac{0.009}{0.207} \tag{6}\\
& \approx 0.043 \tag{7}\\
& \approx 4 \% \tag{8}
\end{align*}
$$

The probability of being ill is only 4% !

