Prof. Dr. W. Burgard

Presence-Exercise

Topic: Bayes Filter with Motion and Sensor Models

Exercise 1:

A robot moves along the middle of a corridor with a given accurate map, as depicted in the figure (see next page). At some of the given locations x_{i} it takes measurements z_{k} of the distance to one side, using one laser beam. Every measurement is corrupted only with additive Gaussian noise $\mathcal{N}(\mu, \sigma)$ with $\mu=0 m$ and $\sigma=1 m$. The scanner range is assumed to be unlimited. The measured distances are $z_{1}=1 m, z_{2}=2 m$, $z_{3}=5.4 m, z_{4}=8.6 m, z_{5}=9 m$. The mapping between z_{k} and x_{i} is unknown.

1. For each measurement, determine the most likely robot pose by calculating the probabilities for each position given the measurement using Bayes' rule. Assume an equally distributed prior. Remember that the probabilities should be scaled such that $\sum_{i=1}^{4} P\left(x_{i} \mid z\right)=1$.
2. The robot believes that taking measurements at the positions x_{2} and x_{3} is in general four times as likely as doing so at x_{1} and x_{4}. Use this prior information to recalculate the probabilities of (2.1).
3. Given the uniform prior, the robot measures $z_{6}=5.5 \mathrm{~m}$. Then it moves to the right, according to the following probability table:

x_{t-1}	x_{1}	x_{2}	x_{3}	x_{4}
$P\left(x_{t}=x_{1} \mid u, x_{t-1}\right)$	0.2	0.05	0	0
$P\left(x_{t}=x_{2} \mid u, x_{t-1}\right)$	0.8	0.15	0.05	0
$P\left(x_{t}=x_{3} \mid u, x_{t-1}\right)$	0	0.8	0.15	0.05
$P\left(x_{t}=x_{4} \mid u, x_{t-1}\right)$	0	0	0.8	0.95

Then it measures $z_{7}=5.5 \mathrm{~m}$. What is the most likely pose of the robot?

Figure 1: Map

