Introduction to Mobile Robotics

Probabilistic Robotics

Wolfram Burgard, Cyrill Stachniss,
Maren Bennewitz, Kai Arras

Probabilistic Robotics

Key idea:
Explicit representation of uncertainty
(using the calculus of probability theory)

- Perception = state estimation
- Action $\quad=$ utility optimization

Axioms of Probability Theory

$\operatorname{Pr}(A)$ denotes probability that proposition A is true.

- $0 \leq \operatorname{Pr}(A) \leq 1$
- $\operatorname{Pr}($ True $)=1$
$\operatorname{Pr}($ False $)=0$
- $\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)$

A Closer Look at Axiom 3

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$

Using the Axioms

$$
\begin{array}{rlc}
\operatorname{Pr}(A \vee \neg A) & =\operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(A \wedge \neg A) \\
\operatorname{Pr}(\text { True }) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(\text { False }) \\
1 & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-0 \\
\operatorname{Pr}(\neg A) & = & 1-\operatorname{Pr}(A)
\end{array}
$$

Discrete Random Variables

- X denotes a random variable
- X can take on a countable number of values in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- $P\left(X=x_{i}\right)$ or $P\left(x_{i}\right)$ is the probability that the random variable X takes on value x_{i}
- $P\left({ }^{(}\right)$is called probability mass function
- E.g. $\quad P($ Room $)=\langle 0.7,0.2,0.08,0.02\rangle$

Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$ or $p(x)$ is a probability density function

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

- E.g.

"Probability Sums up to One"

Discrete case
$\sum_{x}^{P(x)=1}$

Continuous case

$$
\int p(x) d x=1
$$

Joint and Conditional Probability

- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

- $P(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& P(x \mid y)=P(x, y) / P(y) \\
& P(x, y)=P(x \mid y) P(y)
\end{aligned}
$$

- If X and Y are independent then

$$
P(x \mid y)=P(x)
$$

Law of Total Probability

Discrete case

$$
P(x)=\sum_{y} P(x \mid y) P(y) \quad p(x)=\int p(x \mid y) p(y) d y
$$

Marginalization

Discrete case

Continuous case

$$
P(x)=\sum_{y} P(x, y) \quad p(x)=\int p(x, y) d y
$$

Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Normalization

$$
\begin{gathered}
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\eta P(y \mid x) P(x) \\
\eta=P(y)^{-1}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{gathered}
$$

Algorithm:

$$
\begin{aligned}
& \forall x: \operatorname{aux}_{x \mid y}=P(y \mid x) P(x) \\
& \eta=\frac{1}{\sum_{x} \operatorname{aux}_{x \mid y}} \\
& \forall x: P(x \mid y)=\eta \text { aux }_{x \mid y}
\end{aligned}
$$

Bayes Rule with Background Knowledge

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$

Conditional Independence

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

- Equivalent to $P(x \mid z)=P(x \mid z, y)$
and

$$
P(y \mid z)=P(y \mid z, x)
$$

- But this does not necessarily mean

$$
P(x, y)=P(x) P(y)
$$

(independence/marginal independence)

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P (open|z)?

Causal vs. Diagnostic Reasoning

- $P($ open $\mid z)$ is diagnostic
- $P(z$ lopen $)$ is causal
- Often causal knowledge is easier to obtain count frequencies!
- Bayes rule allows us to usé causal knowledge:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

Example

- $P(z \mid$ open $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$

$$
\begin{aligned}
& P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })} \\
& P(\text { open } \mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{0.3}{0.3+0.15}=0.67
\end{aligned}
$$

- z raises the probability that the door is open

Combining Evidence

- Suppose our robot obtains another observation z_{2}
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Recursive Bayesian Updating

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption:
z_{n} is independent of z_{1}, \ldots, z_{n-1} if we know x

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\eta P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right) \\
& =\eta_{1 \ldots n} \prod_{i=1 . \ldots n} P\left(z_{i} \mid x\right) P(x)
\end{aligned}
$$

Example: Second Measurement

- $P\left(z_{2} \mid\right.$ open $)=0.5 \quad P\left(z_{2} \mid \neg\right.$ open $)=0.6$
- $P\left(\right.$ open $\left.\mid z_{1}\right)=2 / 3$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{5}}=\frac{\frac{1}{3}}{\frac{8}{15}}=\frac{5}{8}=0.625
\end{aligned}
$$

- z_{2} lowers the probability that the door is open

A Typical Pitfall

- Two possible locations x_{1} and x_{2}
- $\mathrm{P}\left(\mathrm{x}_{1}\right)=0.99$
- $\mathrm{P}\left(\mathrm{z} \mid x_{2}\right)=0.09 \mathrm{P}\left(\mathrm{z} \mid x_{1}\right)=0.07$

Actions

- Often the world is dynamic since
- actions carried out by the robot,
- actions carried out by other agents,
- or just the time passing by
change the world
- How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase the uncertainty

Modeling Actions

- To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

$$
P\left(x \mid u, x^{\prime}\right)
$$

- This term specifies the pdf that executing u changes the state from x^{\prime} to x.

Example: Closing the door

State Transitions

$P\left(x \mid u, x^{\prime}\right)$ for $u=$ "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Integrating the Outcome of Actions

Continuous case:

$$
P(x \mid u)=\int P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right) d x^{\prime}
$$

Discrete case:

$$
P(x \mid u)=\sum P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right)
$$

Example: The Resulting Belief

$$
\begin{aligned}
P(\text { closed } \mid u)= & \sum P\left(\text { closed } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { closed } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { closed } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{9}{10} * \frac{5}{8}+\frac{1}{1} * \frac{3}{8}=\frac{15}{16} \\
P(\text { open } \mid u)= & \sum P\left(\text { open } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { open } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { open } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{1}{10} * \frac{5}{8}+\frac{0}{1} * \frac{3}{8}=\frac{1}{16} \\
= & 1-P(\text { closed } \mid u)
\end{aligned}
$$

Bayes Filters: Framework

- Given:
- Stream of observations z and action data u :

$$
d_{t}=\left\{u_{1}, z_{1} \ldots, u_{t}, z_{t}\right\}
$$

- Sensor model $P(z \mid x)$
- Action model $P\left(x \mid u, x^{\prime}\right)$
- Prior probability of the system state $P(x)$
- Wanted:
- Estimate of the state X of a dynamical system
- The posterior of the state is also called Belief:

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

Markov Assumption

$$
\begin{aligned}
& p\left(z_{t} \mid x_{0: t}, z_{1: t-1}, u_{1: t}\right)=p\left(z_{t} \mid x_{t}\right) \\
& p\left(x_{t} \mid x_{1: t-1}, z_{1: t}, u_{1: t}\right)=p\left(x_{t} \mid x_{t-1}, u_{t}\right)
\end{aligned}
$$

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filters
$\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, z_{t}\right)$
Bayes $\quad=\eta P\left(z_{t} \mid x_{t}, u_{1}, z_{1}, \ldots, u_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)$
Markov $\quad=\eta P\left(z_{t} \mid x_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)$
Total prob. $=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, x_{t-1}\right)$

$$
P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, z_{t-1}\right) d x_{t-1}
$$

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

1. Algorithm Bayes_filter($\operatorname{Bel}(x), d)$:
2. $\eta=0$
3. If d is a perceptual data item z then
4. For all x do
5. $\quad \operatorname{Bel}^{\prime}(x)=P(z \mid x) \operatorname{Bel}(x)$
6.

$$
\eta=\eta+\operatorname{Bel}^{\prime}(x)
$$

7. For all x do
8. $\quad \operatorname{Bel}^{\prime}(x)=\eta^{-1} \operatorname{Bel}^{\prime}(x)$
9. Else if d is an action data item u then
10. For all x do
11.

$$
\operatorname{Bel}^{\prime}(x)=\int P\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) d x^{\prime}
$$

12. Return Bel' (x)

Bayes Filters are Familiar!

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

