Introduction to Mobile Robotics

Probabilistic Robotics

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

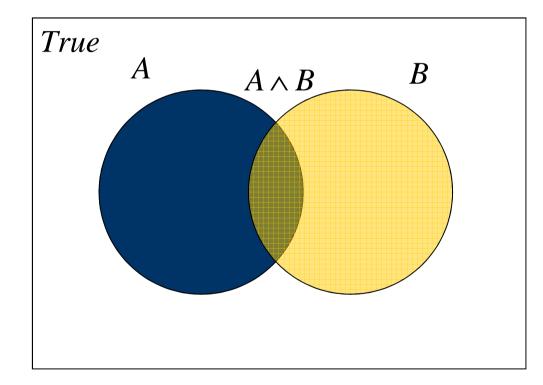
Probabilistic Robotics

Key idea:

Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization


Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.

- $0 \le \Pr(A) \le 1$
- Pr(True) = 1 Pr(False) = 0
- $Pr(A \lor B) = Pr(A) + Pr(B) Pr(A \land B)$

A Closer Look at Axiom 3

$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$

Using the Axioms

$$Pr(A \lor \neg A) = Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$$

$$Pr(True) = Pr(A) + Pr(\neg A) - Pr(False)$$

$$1 = Pr(A) + Pr(\neg A) - 0$$

$$Pr(\neg A) = 1 - Pr(A)$$

Discrete Random Variables

- X denotes a random variable
- X can take on a countable number of values in {x₁, x₂, ..., x_n}
- P(X=x_i) or P(x_i) is the probability that the random variable X takes on value x_i
- P(•) is called probability mass function

• E.g.
$$P(Room) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$$

Continuous Random Variables

X takes on values in the continuum.

p(X=x) or p(x) is a probability density function

Pr(
$$x \in (a,b)$$
) = $\int_{a}^{b} p(x)dx$
E.g. $p(x)$

"Probability Sums up to One"

Discrete case

Continuous case

$$\sum_{x} P(x) = 1$$

$$\int p(x) \, dx = 1$$

Joint and Conditional Probability

•
$$P(X=x \text{ and } Y=y) = P(x,y)$$

•
$$P(x \mid y)$$
 is the probability of x given y
 $P(x \mid y) = P(x,y) / P(y)$
 $P(x,y) = P(x \mid y) P(y)$

If X and Y are independent then
 P(x | y) = P(x)

Law of Total Probability

Discrete case

Continuous case

$$P(x) = \sum_{y} P(x \mid y) P(y) \qquad p(x) = \int p(x \mid y) p(y) \, dy$$

Marginalization

Discrete case

Continuous case

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int p(x, y) \, dy$$

Bayes Formula

 \Rightarrow

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Normalization

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \eta P(y \mid x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y \mid x) P(x)}$$

Algorithm:

$$\forall x : \operatorname{aux}_{x|y} = P(y \mid x) \ P(x)$$

$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$

$$\forall x : P(x \mid y) = \eta \operatorname{aux}_{x \mid y}$$

Bayes Rule with Background Knowledge

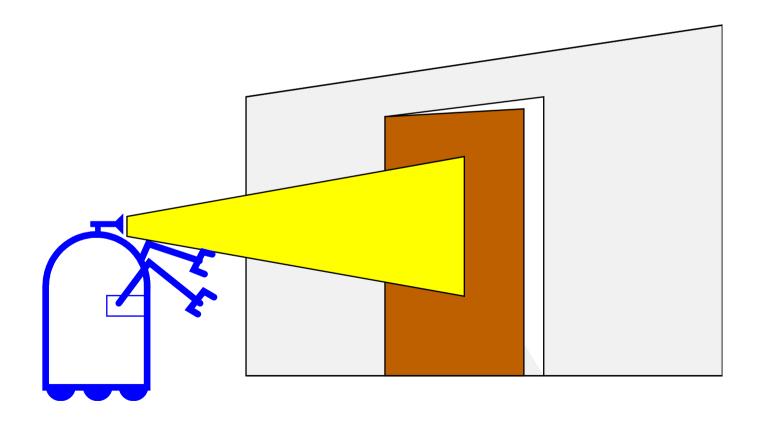
$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

Conditional Independence

$$P(x, y \mid z) = P(x \mid z)P(y \mid z)$$

• Equivalent to P(x|z) = P(x|z, y)

and
$$P(y|z)=P(y|z,x)$$


But this does not necessarily mean

$$P(x, y) = P(x)P(y)$$

(independence/marginal independence)

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P(open|z)?

Causal vs. Diagnostic Reasoning

- P(open|z) is diagnostic
- P(z|open) is causal
- Often causal knowledge is easier to obtain
 Count frequencies!
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

• P(z/open) = 0.6 $P(z/\neg open) = 0.3$

•
$$P(open) = P(\neg open) = 0.5$$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$
$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{0.3}{0.3 + 0.15} = 0.67$$

z raises the probability that the door is open

Combining Evidence

- Suppose our robot obtains another observation z₂
- How can we integrate this new information?
- More generally, how can we estimate P(x/z₁...z_n)?

Recursive Bayesian Updating

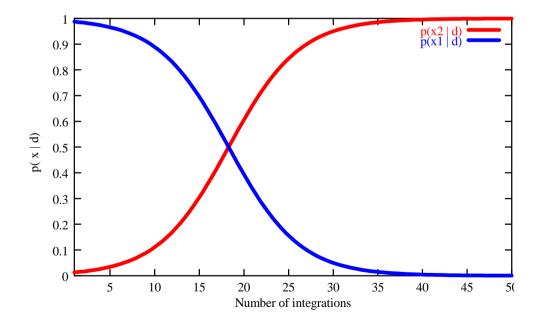
$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,..., z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of z_1, \dots, z_{n-1} if we know x

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

= $\eta P(z_n \mid x) P(x \mid z_1,...,z_{n-1})$
= $\eta_{1...n} \prod_{i=1...n} P(z_i \mid x) P(x)$

Example: Second Measurement


- $P(z_2/open) = 0.5$ $P(z_2/\neg open) = 0.6$
- $P(open/z_1)=2/3$

 $P(open \mid z_2, z_1) = \frac{P(z_2 \mid open) P(open \mid z_1)}{P(z_2 \mid open) P(open \mid z_1) + P(z_2 \mid \neg open) P(\neg open \mid z_1)}$ $= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{5}} = \frac{\frac{1}{3}}{\frac{8}{15}} = \frac{5}{8} = 0.625$

• z_2 lowers the probability that the door is open

A Typical Pitfall

- Two possible locations x₁ and x₂
- P(x₁)=0.99
- $P(z|x_2)=0.09 P(z|x_1)=0.07$

Actions

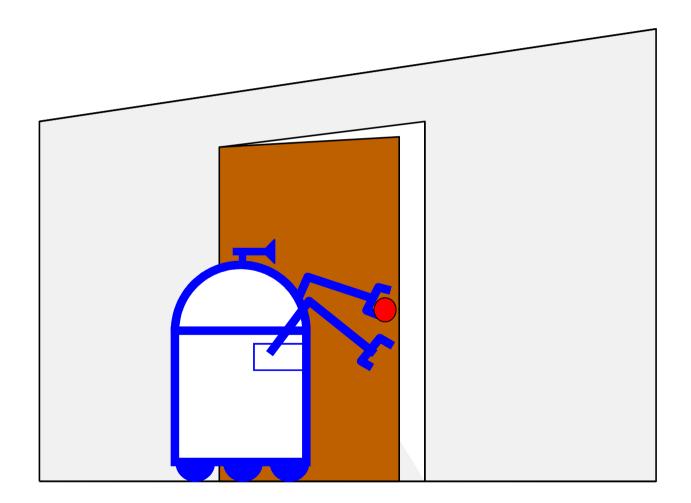
- Often the world is **dynamic** since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by

change the world

How can we incorporate such actions?

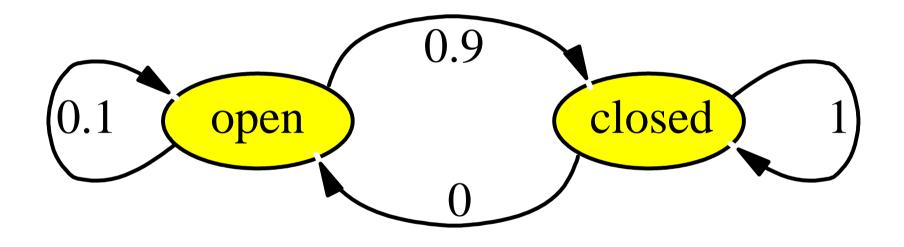
Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase the uncertainty


Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

P(x|u,x')


 This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door

State Transitions

P(x|u,x') for u = "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

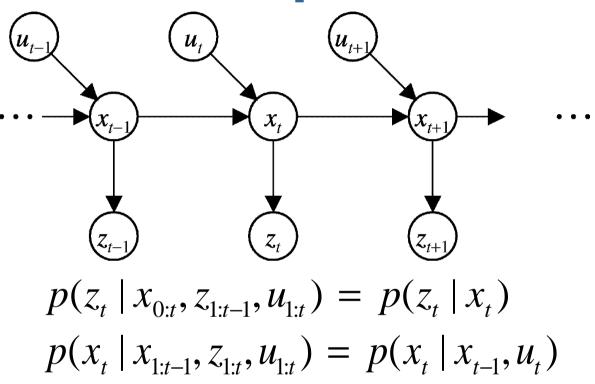
Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x')P(x')$$

Example: The Resulting Belief $P(closed | u) = \sum P(closed | u, x')P(x')$ = P(closed | u, open)P(open)+ P(closed | u, closed)P(closed) $=\frac{9}{10}*\frac{5}{8}+\frac{1}{1}*\frac{3}{8}=\frac{15}{16}$ $P(open | u) = \sum P(open | u, x')P(x')$ = P(open | u, open)P(open)+ P(open | u, closed)P(closed) $=\frac{1}{3} + \frac{5}{3} + \frac{0}{3} + \frac{3}{3} = \frac{1}{3}$ 10 8 1 8 16 $=1-P(closed \mid u)$

Bayes Filters: Framework

Given:


Stream of observations z and action data u:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

- Sensor model P(z|x)
- Action model P(x|u,x')
- Prior probability of the system state P(x)
- Wanted:
 - Estimate of the state X of a dynamical system
 - The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filters

$$\begin{split} \overline{Bel(x_t)} &= P(x_t \mid u_1, z_1, \dots, u_t, z_t) \\ \text{Bayes} &= \eta P(z_t \mid x_t, u_1, z_1, \dots, u_t) P(x_t \mid u_1, z_1, \dots, u_t) \\ \text{Markov} &= \eta P(z_t \mid x_t) P(x_t \mid u_1, z_1, \dots, u_t) \\ \text{Total prob.} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) \\ P(x_{t-1} \mid u_1, z_1, \dots, u_t) dx_{t-1} \\ \text{Markov} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, u_t) dx_{t-1} \\ \text{Markov} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, u_t) dx_{t-1} \\ \text{Markov} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) dx_{t-1} \\ \end{array}$$

32

$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$

- 1. Algorithm **Bayes_filter**(*Bel(x),d*):
- *2.* η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all x do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\theta. \qquad \eta = \eta + Bel'(x)$$

7. For all *x* do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

9. Else if *d* is an action data item *u* then

10. For all *x* do
11.
$$Bel'(x) = \int P(x | u, x') Bel(x') dx'$$

12. Return *Bel'(x)*

Bayes Filters are Familiar!

$$Bel(x_{t}) = \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.