
1

Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

Probabilistic Robotics

Introduction to
Mobile Robotics



2

Probabilistic Robotics

Key idea: 
Explicit representation of uncertainty 
(using the calculus of probability theory)

� Perception  = state estimation

� Action = utility optimization
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Pr(A) denotes probability that proposition A is true.

�

�

�

Axioms of Probability Theory
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A Closer Look at Axiom 3
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Using the Axioms
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Discrete Random Variables

� X denotes a random variable

� X can take on a countable number of values 
in {x1, x2, …, xn}

� P(X=xi) or P(xi) is the probability that the 
random variable X takes on value xi

� P( ) is called probability mass function

� E.g. 02.0,08.0,2.0,7.0)( =RoomP

.
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Continuous Random Variables

� X takes on values in the continuum.

� p(X=x) or p(x) is a probability density 
function

� E.g.
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““““Probability Sums up to One””””

∑ =
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Discrete case Continuous case
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Joint and Conditional Probability

� P(X=x and Y=y) = P(x,y)

� If X and Y are independent then 

P(x,y) = P(x) P(y)

� P(x | y) is the probability of x given y

P(x | y) = P(x,y) / P(y)

P(x,y)   = P(x | y) P(y)

� If X and Y are independent then

P(x | y) = P(x)
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Law of Total Probability
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Discrete case Continuous case
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Marginalization
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Discrete case Continuous case
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Bayes Formula
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prior likelihood
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Normalization
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Bayes Rule 
with Background Knowledge
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Conditional Independence

)|()|(),( zyPzxPzyxP =

),|()( yzxPzxP =

),|()( xzyPzyP =

� Equivalent to

and

� But this does not necessarily mean

(independence/marginal independence)

)()(),( yPxPyxP =
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Simple Example of State Estimation

� Suppose a robot obtains measurement z

� What is P(open|z)?
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Causal vs. Diagnostic Reasoning

� P(open|z) is diagnostic

� P(z|open) is causal

� Often causal knowledge is easier to 
obtain

� Bayes rule allows us to use causal 
knowledge:
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count frequencies!
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Example

� P(z|open) = 0.6 P(z|¬open) = 0.3

� P(open) = P(¬open) = 0.5
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� z raises the probability that the door is open
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Combining Evidence

� Suppose our robot obtains another 
observation z2

� How can we integrate this new information?

� More generally, how can we estimate
P(x| z1...zn )?
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Recursive Bayesian Updating
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Example: Second Measurement 

� P(z2|open) = 0.5 P(z2|¬open) = 0.6

� P(open|z1)=2/3
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• z2 lowers the probability that the door is open
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A Typical Pitfall

� Two possible locations x1 and x2

� P(x1)=0.99 

� P(z|x2)=0.09 P(z|x1)=0.07 
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Actions

� Often the world is dynamic since

� actions carried out by the robot,

� actions carried out by other agents,

� or just the time passing by

change the world

� How can we incorporate such actions?
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Typical Actions

� The robot turns its wheels to move

� The robot uses its manipulator to grasp 
an object

� Plants grow over time…

� Actions are never carried out with 
absolute certainty

� In contrast to measurements, actions 
generally increase the uncertainty
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Modeling Actions

� To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf 

P(x|u,x’’’’)

� This term specifies the pdf that 
executing u changes the state 
from x’’’’ to x.
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Example: Closing the door
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State Transitions

P(x|u,x’) for u = “close door”:

If the door is open, the action “close door”
succeeds in 90% of all cases

open closed0.1 1

0.9

0
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Integrating the Outcome of Actions

∫= ')'()',|()|( dxxPxuxPuxP

∑= )'()',|()|( xPxuxPuxP

Continuous case:

Discrete case:
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Example: The Resulting Belief
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Bayes Filters: Framework

� Given:

� Stream of observations z and action data u:

� Sensor model P(z|x)

� Action model P(x|u,x’)

� Prior probability of the system state P(x)

� Wanted: 

� Estimate of the state X of a dynamical system

� The posterior of the state is also called Belief:

),,,|()( 11 tttt zuzuxPxBel K=

},,,{ 11 ttt zuzud K=
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Markov Assumption

Underlying Assumptions

� Static world

� Independent noise

� Perfect model, no approximation errors

p(xt | x1:t−1, z1:t,u1:t ) = p(xt | xt−1,ut )
p(zt | x0:t, z1:t−1,u1:t ) = p(zt | xt )
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= η P(zt | xt ) P(xt |ut, xt−1)∫ Bel(xt−1) dxt−1

Bayes Filters

),,,|(),,,,|( 1111 ttttt uzuxPuzuxzP KKη=Bayes

z = observation
u = action
x = state
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Bayes Filter Algorithm 

1. Algorithm Bayes_filter( Bel(x),d ):

2. η=0

3. If d is a perceptual data item z then

4. For all x do

5.

6.

7. For all x do

8.

9. Else if d is an action data item u then

10. For all x do

11.

12. Return Bel’(x)

)()|()(' xBelxzPxBel =
)(' xBel+=ηη

)(')(' 1 xBelxBel −=η

')'()',|()(' dxxBelxuxPxBel ∫=

Bel(xt ) = η P(zt | xt ) P(xt |ut, xt−1)∫ Bel(xt−1) dxt−1
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Bayes Filters are Familiar!

� Kalman filters

� Particle filters

� Hidden Markov models

� Dynamic Bayesian networks

� Partially Observable Markov Decision 
Processes (POMDPs)

Bel(xt ) = η P(zt | xt ) P(xt |ut, xt−1)∫ Bel(xt−1) dxt−1
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Summary

� Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise.

� Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence.

� Bayes filters are a probabilistic tool 
for estimating the state of dynamic 
systems.


