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Vectors

A Arrays of numbers

A Vectors represent apointina n dimensional
space

aq a2

(a1)

an, ai



Vectors: Scalar Product

A Scalar -Vector Product  ka
A Changes the length of the vector, but not

Its direction
/k:a
an

al




Vectors: Sum

A Sum of vectors (is commutative)

ai b1 b1 ai
o N R S I O e
an, bn bn an

A Can be visualizedas fic h a i n thewpdors.




Vectors: Dot Product

A Inner product of vectors (is a scalar)
a-b=b-a:Zaibi
)

A If one of the two  vectors, e.g. a, has |laj]|=1
the inner product a - breturns the length of
the projection of abyng the direction of a

A If a-b=0,the
two vectors are
orthogonal




Vectors: Linear (In)Dependence

A A vector bs linearly dependent from
{8‘17327 R 7an} f b= Zk@a@

A In other words, if bcan be obtained by
summing up the aproperly  scaled

A If there existno {kijch  that b=)> ka;
then b isindependent from  {a;} ’
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Matrices

A A matrix is written as a table of values

( a1l a12 -+ A1m \
a a e a
. 1‘ T
\ Anl An2 -*° anm ) rows columns

A 1st index referstothe row
A 2nd index referstothe column

A Note : a d -dimensional vector is equivalent
to a dx1 matrix



Matrices as Collections of

Vectors

A Column vectors

Ayl AygD
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Matrices as Collections of

Vectors

A Row vectors

(a7
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Important Matrices Operations

A Multiplication by a scalar

A Sum (commutative, associative)
A Multiplication by a vector

A Product (not commutative)

A Inversion (square, full rank)

A Transposition



Scalar Multiplication & Sum

A In the scalar multiplication, every element
of the vector or matrix is multiplied with the
scalar

A The sum of two vectors is a vector
consisting of the pair -wise sums of the
Individual entries

A The sum of two matrices is a matrix
consisting of the pair -wise sums of the
Individual entries



Matrix Vector Product

A The ith componentof A - b is the dot product
al -b
A The vector A -b is linearly dependent  from
{a.;} with coefficients  {b;}

Ab=|% [.b=|22P | =Y a, .y
: : .
\ag* \ag*'b) I
t

row vectors column vectors



Matrix Vector Product

A If the column  vectors of A represent a
reference system, the product A-b
computes the global transformation of the
vector b according to {a.;}

column vectors




Matrix Matrix Product

A Can be defined through
A the dot product of row and column vectors

A the linear combination of the columns of A
scaled by the coefficients of the columns of B
C = AB
[al b,y al, by --- al - buy )
— ag* - b1 ag* by - ag* - Dam
\ag*'b*l ag*'b*Q ag*b*m}

(A-b*l A - b, ...A-b*m)



Matrix Matrix Product

A If we consider the second Interpretation,
we see that the columns of C are the
Agl obal transf thecolarng on s C

of B through A

A All the interpretations made for the matrix
vector product hold

C = AB
— (A-b*l A b, ...A-b*m)
Cxi — A'b*i



Linear Systems (1)

Ax =Db

Interpretations:
A A set of linear equations

A Away to find the coordinates x in the
reference system of A suchthat b isthe
result of the transformation of AX

A Solvable by Gaussian elimination
(as taught in school)



Linear Systems (2)

Ax =Db

Notes:

A Many efficient solvers exit, e.g., conjugate
gradients, sparse Cholesky decomposition

A One can obtain a reduced system (AOC b0 by
considering the matrix (A, b ) and suppressing all
the rows which are linearly dependent

A Let A'x =b' the reduced system with A" n'’xm and
b' an]. and rank Al — mln( nl,m ) rows ﬂ \ columns

A The system might be either over -constrained
(n®m) orunder -constrained (n&m)



Over -Constrained  Systems

AfiMore (indep) equations t han

A An over -constrained system does not
admit an exact solution

A However, if rank A 6= cols(A) one may
find a minimum norm solution by
closed form pseudo inversion

x = argmin||A’x — b/|| = (AT A) 1A Y
X

Note: rank = Maximum number of linearly independent rows/columns



Under -Constrained Systems

Afi Mo rvariablesthan ( indep) equati on

A The system is under -constrained If the
number of linearly independent rows (or
columns) of A 0 is smaller than the
dimension of b0

A An under -constrained system admits infinite
solutions

A The degree of these infinite solutions IS
cols(AQ - rows( AQ



Inverse
AB =1

A If A is a square matrix of full rank, then
there Is a unigue matrix B=A -! such that
AB=l holds

A The ith row of A is andthe jt columnof A-l
alre.
A orthogonal (if i, j)
A or their dot product  is 1 (if i =j)



Matrix Inversion
AB =1

A The ith column of A-! can be found by

solving the following  linear system
A_a_]- . — i . «———Thisisthe i column
*T *1 of the identity matrix



Trace ( tr)

A
A

A

A

A

A

Only defined for

sqguare matrices

Sum of the elements on the main diagonal, that is

tr(A) = QA11 T A2 + *** + Qpp = Zaii
1=1

It is a linear operator with the following properties

A Additivity: tr(A+ B) = tr(A) + tr(B)

A Homogeneity: tr(cA) = ¢ x tr(A)

A Pairwise commutative: tr(AB) = tr(BA), tr(ABC) # tr(ACB)
Trace is similarity invariant tr(P 1 AP) = tr((AP™ 1) P) = tr(A)
Trace is transpose invariant tr(A) = tr(A")

Giventwo vectors a and b, tr(a" b)=tr( a bT)



Rank

A Maximum  number of linearly independent rows (columns)
A Dimension of the image of the transformation f(x) = Ax

A When Ais m x n2 have
A rank(A) > 0 and the equality holds iff  isAie null matrix
A rank(A) < min(m,n)
A f(x)is injective  iff rank(A4) =n
A f(x) is surjective  iff rank(A4) =m
A ifm=mn f(x) Dbijective and Ais invertible iff rank(A) =n

A Computation of the rank is done by
A Gaussian elimination on the matrix
A Counting the number of non  -zero rows



Determinant (det)

A Only defined for  square matrices
A Theinverse of  Axists if and only if det(A) #0
A For 2 x 2natrices:

Let A = [a,,;j]nd ‘A‘ = det(A)

aip ai2

— Q11 *A22 — Q12 - 421
az1 a22

A For 3 x 3matrices the Sarrus rule holds:
a1, ai2, a1z |
a1 G2 A23 | = (11022033 T A12023031 + 013021032
asr ass " azs |

—a11G23032 — 4120210433 — 4130220411



Determinant

A For general n x n matrices?

Let A;pethe submatrix obtained from A
by deleting the /-th row and the /-th column

1 2 5 0 . 0
2 3 4 -1
58 0 0 - An- (2) _42 _01
0 4 -2 0 |

Rewrite determinant for 3 x Jices:

3x3
det(A°"°) = ai1a99a33 + a12a23a31 + 413021032

—Qa11G23032 — 412021033 — 413022011

= a1 -det(Aq1) — a1z - det(Aq1z) + a3 - det(Aqs)



Determinant

A For general n x n matrices?

det(A) = ajpidet(Aq1r) — aradet(Ais) + ...+ (=1)'"ay, det(Aq,)
— Zn:(—l)1+ja1jdet(A1j)
j=1
Let C;; = (—1)""Idet(A;;)e (i,j)- cofactor, then
det(A) = a11C11 +a12C12 + ... +a1,Cqyp,

n
— E Qljclj
J=1

This is called the cofactor expansion across the first row



Determinant

A Problem: Take a 25 x 25 matrix (which is considered small).
The cofactor expansion method requires n! multiplications.
For n = 25, this is 1.5 x 10725 multiplications for which a
today supercomputer would take 500,000 years

A There are much faster methods , hamely using Gauss
elimination to bring the matrix into triangular form.

I dl * * * |
L 0 dg * * n
A= o0 O 4 s det(A) = 7, d;
0 0 0 dy |
Because for triangular matrices the determinant is the

product of diagonal elements



Determinant: Properties

A Row operations (A isstill a n x nquare matrix)

A If Besults from bAinterchanging two rows,
then det(B) = —det(A)

A If Besults from bAmultiplying one row with a number c
then det(B) = ¢ - det(A)

A If Besults from bAadding a multiple of one row to another
row, then det(B) = det(A)

A Transpose : det(Al) = det(A)
A Multiplication  : det(A - B) = det(A) - det(B)

A Does not apply to addition!  det(A + B) # det(A) + det(B)



Determinant: Applications

adj(A)

A Find the inverse A~lusingCramer srule A-1 =
; det(A)

with adj(A eing the adjugate of A

[ C11 Co1 -+ Cp1
adj(A) = 0:12 Coo -+ Cp2
\Cln Cop - Onn)

with C; being the cofactors of A, l.e.,

Cij = (—1)""det(Aj)




Determinant: Applications

) dj(A
A Find the inverse A~lusing Cramer srule A= = 3 i(A)
with adj(A eing the adjugate of A ct(A)
A Compute Eigenvalues:
Solve the characteristic polynomial det(A—X-1I)=0

A Area and Volume: area = |det(A)|

(a+c,b+d)

> o
S e

|

(r;is i-th row)

Q Q. 2




Orthonormal Matrix

A A matrix @3 orthonormal Iff its column (row)
vectors represent an  orthonormal basis

T [ 10f i= o
A As linear transformation, it is norm preserving

A Some properties:
A The transpose is the inverse QRT =0T =1
A Determinant has unity norm ( § 1)

1 =det(I) = det(QT Q) = det(Q)det(Q") = det(Q)?



Rotation

Matrix

A A Rotation matrix is an orthonormal matrix with det =+1

A 2D Rotations R(6) = cos(0)  —sin(6)
sin(f)  cos(0)
A 3D Rotations along the main axes
(10 0 ] " cos(f)
R.(0) =1 0 cos(f) —sin(f) R,(0) = 0
| 0 sin(f)  cos(0) | sin(0)
A IMPORTANT: Rotations are not commutative
- - [ 0.707 0 —0.707 | - .
1%%93(1)-1%_@(Z -0.5 0.707 —-0.5 |, Rm(z)-Ry(Z)
| 0.5 0.707 0.5
- - [ 0.707 —0.5 —0.5 - -
Ry () Ra(y 0 0707 —0.707 |, Ry(7)-Ra()
| 0.707 0.5 0.5

0
1
0

Lo N =

(N

— sin(6)
0
cos(0)

[ —1.414 |
= | 0.586
3.414

[ —1.793
= 0.707
3.207




Matricesto  Represent Affine
Transformations

A A general and easy way to describe a 3D
transformation Is via matrices

Translation Vector

(B0 e (1)

Rotation Matrix

A Takes naturally into account the non
commutativity of the transformations

A See: homogeneous coordinates



Combining Transformations

A A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
A Matrix A represents the pose of a robot in the space
A Matrix B represents the position of a sensor on the robot

A The sensor perceives an object ata given location p,in
its own frame [the sensor has no clue on where it is in the
world]

A Where is the object in the global frame?



Combining Transformations

A A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
A Matrix A represents the pose of a robot in the space
A Matrix B represents the position of a sensor on the robot

A The sensor perceives an object ata given location p,in
its own frame [the sensor has no clue on where it is in the
world]

A Where is the object in the global frame?

@ Bp gives the pose of the
object wrt the robot

v
[ ]
[




Combining Transformations

A A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
A Matrix A represents the pose of a robot in the space
A Matrix B represents the position of a sensor on the robot

A The sensor perceives an object ata given location p,in
its own frame [the sensor has no clue on where it is in the
world]

A Where is the object in the global frame?

®. o

Bp gives the pose of the
object wrt the robot

0

AB p gives the pose of the
object wrt the world

>



Symmetric  Matrix

1 4 =2

A Amatrix 4 symmetric if 4 = ATe.q. 4 —~1 3

-2 3 D
, o - 0 4
A Amatrix As skew -symmetric if A =—-A".qg. 4 0
2 -3

A Every symmetric matrix:

A is diagonalizable D = QAQ", where Ds a diagonal matrix
of eigenvalues and ()is an orthogonal matrix whose columns
are the eigenvectors of A

n
A define a quadratic form g(x) =x"Ax = ) ajmw;
i,,J=1



Positive  Definite Matrix

A The analogous of positive number

A Definiton M > 0iff 2zl Mz > 0Vz £ 0

A Example

A Ml:!é ?], {Zl Zz}ll O][Z1]:Z%+Z§>O



Positive  Definite Matrix

A Properties
A Invertible , with positive definite inverse
A All real eigenvalues >0
A Trace is>0
A Cholesky decomposition A = LT



Jacoblan Matrix

A It is a non -square matrix n x m in general

A Given a vector -valued function

[ f1(x) |
) = | 29

i fm.(X) i

A Then, the Jacobian matrix IS defined as



