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Vectors  

ÁArrays of numbers  

ÁVectors represent a point in a n dimensional 
space  



Vectors: Scalar Product  

ÁScalar -Vector Product  

ÁChanges the length of the vector, but not  
its direction  



Vectors: Sum  

ÁSum of vectors (is commutative)  

 

 

 

 

ÁCan be visualized as ñchainingò the vectors.  



Vectors: Dot Product  

ÁInner product of vectors (is a scalar)  

 
 

ÁIf one of the two vectors, e.g.   , has          , 
the inner product       returns the length of 
the projection of    along the direction of  

Á If             , the 
two vectors are 
orthogonal  



ÁA vector    is linearly dependent  from    
                  if  

ÁIn other words, if     can be obtained by  
summing up the     properly scaled  

ÁIf there exist no       such that                 
then     is independent from  

 

 

Vectors: Linear (In)Dependence  



ÁA vector    is linearly dependent  from    
                  if  

ÁIn other words, if     can be obtained by  
summing up the     properly scaled  

ÁIf there exist no       such that                 
then     is independent from  

 

 

Vectors: Linear (In)Dependence  



Matrices  

ÁA matrix is written as a table of values  

 

 

 

 

 

Á1 st  index  refers to the row   

Á2 nd  index  refers to the column  

ÁNote : a d -dimensional vector is equivalent 
to a dx1 matrix  

 

columns  rows  



Matrices as Collections of 
Vectors  

ÁColumn vectors  



Matrices as Collections of 
Vectors  

ÁRow vectors  



Important Matrices Operations  

ÁMultiplication by a scalar  

ÁSum (commutative, associative)  

ÁMultiplication by a vector  

ÁProduct (not commutative)  

ÁInversion (square, full rank)  

ÁTransposition  

 



Scalar Multiplication & Sum  

ÁIn the scalar multiplication, every element 
of the vector or matrix is multiplied with the 
scalar  

ÁThe sum of two vectors is a vector 
consisting of the pair -wise sums of the 
individual entries  

ÁThe sum of two matrices is a matrix 
consisting of the pair -wise sums of the 
individual entries  

 



Matrix Vector Product  

ÁThe ith  component of        is the dot product       
.  

ÁThe vector        is linearly dependent from  
       with coefficients       

column vectors  row vectors  



Matrix Vector Product  

ÁIf the column vectors of    represent a 
reference system, the product         
computes the global transformation of the 
vector    according to  

 
column vectors  



Matrix Matrix Product  

ÁCan be defined through  

Áthe dot product of row and column vectors  

Áthe linear combination of the columns of A  
scaled by the coefficients of the columns of  B  



Matrix Matrix Product  

ÁIf we consider the second interpretation,  
we see that the columns of C are the  
ñglobal transformationsò of the columns  
of B through A  

ÁAll the interpretations made for the matrix 
vector product hold  



Linear Systems (1)  

Interpretations:  

ÁA set of linear equations  

ÁA way to find the coordinates x  in the 
reference system of A  such that b is the 
result of the transformation of Ax  

ÁSolvable by Gaussian elimination  
(as taught in school)  

 



Linear Systems (2)  

Notes:  

ÁMany efficient solvers exit, e.g., conjugate 
gradients, sparse Cholesky decomposition  

ÁOne can obtain a reduced system ( Aô, bô)  by 
considering the matrix ( A, b )  and suppressing all 
the rows which are linearly dependent  

ÁLet A'x =b'  the reduced system with A': n'xm  and 
b' :n'x1 and rank A'  = min( n',m )  

ÁThe system might be either over -constrained 
(nô>m)  or under -constrained (nô<m)  

 

columns  rows  



Over - Constrained Systems  

ÁñMore ( indep ) equations than variablesò 

ÁAn over -constrained system does not 
admit an exact solution  

ÁHowever, if   rank Aô = cols (A )    one may 
find a minimum norm solution  by 
closed form pseudo inversion  

 

Note: rank = Maximum number of linearly independent rows/columns  
 



Under - Constrained Systems  

ÁñMore variables than ( indep ) equationsò 

ÁThe system is under - constrained  if the 
number of linearly independent rows  (or 
columns) of Aô  is smaller than the 
dimension of bô 

ÁAn under -constrained system admits infinite 
solutions  

ÁThe degree of these infinite solutions is 
cols (Aô) -  rows( Aô)  



Inverse  

ÁIf A is a square matrix of full rank, then 
there is a unique matrix B=A - 1  such that 
AB=I  holds  

ÁThe ith  row of A  is and the j th column of A - 1 

are:  

Á orthogonal (if i  ̧ j )  

Á or their dot product is 1 (if i = j )  

 



Matrix Inversion  

ÁThe ith  column of A - 1   can be found by 
solving the following linear system :  

 
This is the ith  column 
of the identity matrix  



Á Only defined for square matrices   

Á Sum  of the elements on the main diagonal, that is  

 

 

 

Á It is a linear operator with the following properties  

Á Additivity:  

Á Homogeneity:  

Á Pairwise commutative:  

 

Á Trace is similarity invariant  

 

Á Trace is transpose invariant  

 

Á Given two vectors a  and b, tr( aT b )=tr( a b T)  

Trace ( tr )  

bl a



Á Maximum  number of linearly independent rows (columns)  

Á Dimension of the image  of the transformation  

 

Á When     is          we have  

Á                    and the equality holds iff     is the null matrix  

Á   

Á        is injective  iff  

Á        is surjective  iff  

Á if          ,        is bijective  and    is invertible  iff  

 

Á Computation of the rank is done by  

Á Gaussian elimination on the matrix  

Á Counting the number of non -zero rows  

 

Rank  

bl a



Á Only defined for square matrices   

Á The inverse of     exists if and only if  

Á For         matrices:  

 Let               and                   , then  

 

 

 

 

Á For         matrices the Sarrus  rule holds:  

Determinant (det)  



Á For general           matrices?  

 Let       be the submatrix  obtained from  
by deleting the i-th  row and the j-th  column  

 

 

 

 

 

 Rewrite determinant for         matrices:  

Determinant  



Á For general           matrices?  

 

 

 

 

 

Let                                 be the (i,j)-cofactor, then  

 

 

 

 

 

This is called the cofactor expansion  across the first row  

Determinant  



Á Problem:  Take a 25 x 25 matrix (which is considered small). 

The cofactor expansion method requires n! multiplications. 

For n = 25, this is 1.5 x 10^25 multiplications for which a 

today supercomputer would take 500,000 years . 

 

Á There are much faster methods , namely using Gauss 

elimination  to bring the matrix into triangular form.  

 

 

 

 

 Because for triangular matrices  the determinant is the 

product of diagonal elements  

  

Determinant  



Determinant: Properties  

Á Row  operations  (    is still a          square matrix)  

Á If    results from    by interchanging two rows,  

then  

Á If    results from    by multiplying one row with a number   ,  

then  

Á If    results from    by adding a multiple of one row to another 

row, then  

 

Á Transpose :  

 

Á Multiplication :  

 

Á Does not  apply to addition!  



Determinant: Applications  

Á Find the inverse         using Cramer s rule  

 with           being the adjugate  of  

 

 

 

 

 

 

 

 with Cij  being the cofactors of A , i.e.,  

 



Determinant: Applications  

Á Find the inverse         using Cramer s rule  

 with           being the adjugate  of  

 

Á Compute Eigenvalues:  

 Solve the characteristic polynomial  

 

Á Area  and Volume:   

(    is i-th row)  



ÁA matrix     is orthonormal  iff its column (row) 
vectors represent an orthonormal  basis  

 

 

 

ÁAs linear transformation, it is norm preserving  

 

ÁSome properties:  

ÁThe transpose is the inverse  

ÁDeterminant has unity norm ( §  1)  

 

Orthonormal Matrix  



Á A Rotation matrix is an orthonormal matrix with det =+1  
 
Á 2D Rotations  

 
Á 3D Rotations along the main axes  

 
 
 
 

Á IMPORTANT: Rotations are not commutative  
 

  
 
 
  
 

Rotation Matrix  



Matrices to Represent Affine 
Transformations  

ÁA general and easy way to describe a 3D 
transformation is via matrices  

 

 

 

 

 

 

ÁTakes naturally into account the non -
commutativity of the transformations  

ÁSee: homogeneous coordinates  

Rotation Matrix  

Translation Vector  



Combining Transformations  

ÁA simple interpretation: chaining of transformations 
(represented as homogeneous matrices)  

ÁMatrix A  represents the pose of a robot  in the space  

ÁMatrix B  represents the position of a sensor on the robot  

ÁThe sensor  perceives an object  at a given location p , in 
its own frame [the sensor has no clue on where it is in the 
world]  

ÁWhere is the object in the global frame?  

p  



Combining Transformations  

ÁA simple interpretation: chaining of transformations 
(represented as homogeneous matrices)  

ÁMatrix A  represents the pose of a robot  in the space  

ÁMatrix B  represents the position of a sensor on the robot  

ÁThe sensor  perceives an object  at a given location p , in 
its own frame [the sensor has no clue on where it is in the 
world]  

ÁWhere is the object in the global frame?  

B 

Bp gives the pose of the 
object wrt the robot  



Combining Transformations  

ÁA simple interpretation: chaining of transformations 
(represented as homogeneous matrices)  

ÁMatrix A  represents the pose of a robot  in the space  

ÁMatrix B  represents the position of a sensor on the robot  

ÁThe sensor  perceives an object  at a given location p , in 
its own frame [the sensor has no clue on where it is in the 
world]  

ÁWhere is the object in the global frame?  

Bp gives the pose of the 
object wrt the robot  

AB p gives the pose of the 
object wrt the world  

A 



Á A matrix     is symmetric  if            , e.g.  

 

 

 

Á A matrix     is skew - symmetric  if             , e.g.  

 

 

 

Á Every  symmetric matrix:  

Á is diagonalizable                  ,  where     is a diagonal matrix 
of eigenvalues  and     is an orthogonal matrix whose columns 
are the eigenvectors  of  

 

Á define a quadratic form  

 

Symmetric Matrix  

bl a



ÁThe analogous of positive number  

 

ÁDefinition  

 

 

ÁExample  

 

Á  

 

 

Positive Definite Matrix  



ÁProperties  

ÁInvertible , with positive definite inverse  

ÁAll real eigenvalues  > 0  

ÁTrace  is > 0  

ÁCholesky  decomposition  

  

  

 

 

Positive Definite Matrix  



Jacobian Matrix  

Á It  is a non - square matrix            in general  

ÁGiven a vector -valued function  

 

 

ÁThen, the  Jacobian matrix is defined as 


