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Vectors

= Arrays of numbers

= Vectors represent a point in a n dimensional
space

a1 a2

an, ai



Vectors: Scalar Product

= Scalar-Vector Product ka
= Changes the length of the vector, but not

its direction
/ka
an

al




Vectors: Sum

= Sum of vectors (is commutative)

ai b1 b1 ai
2=+ "
an, bn bn an

= Can be visualized as “chaining” the vectors.




Vectors: Dot Product

= Inner product of vectors (is a scalar)
a-b=b-a:Zaibi
)

= If one of the two vectors, e.g.a, has|lal| =1
the inner product a - breturns the length of
the projection of b along the direction of a

= Jfa-b =20, the
two vectors are
orthogonal




Vectors: Linear (In)Dependence

= A vector b is linearly dependent from
{8‘17327 I 7an} |f b = Zk@a@

= In other words, if bi can be obtained by
summing up the a; properly scaled

= If there exist no {ki} such that b=> k;a;
then b is independent from {a;}




Vectors: Linear (In)Dependence
= A vector b is linearly dependent from
{8‘17327 .. 7an} |f b = Zk@a@

= In other words, if bi can be obtained by
summing up the a; properly scaled

= If there exist no {ki} such that b=)> k;a;
then b is independent from {a;}
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Matrices

= A matrix is written as a table of values

(a11 a12 -+ aim )
a a * o o a
A=| 721 %22 2m A:inxm
: ¢ 'T‘I
\ an1 Apo -+ Qnm ) rows columns

= 1st jndex refers to the row
= 2nd jndex refers to the column

= Note: a d-dimensional vector is equivalent
to a dx1 matrix



Matrices as Collections of
Vectors

= Column vectors

(a*l AxD - a*m>
([a11] [@12] -~ [a1m| )
A = || 921]|a22] - a2

\a’nl An2| - anm)




Matrices as Collections of

Vectors

= Row vectors

(a7

ail aio A1m
a1 an?n A2m
Anl Qap2 anm

S

=\ agn



Important Matrices Operations

= Multiplication by a scalar

= Sum (commutative, associative)
= Multiplication by a vector

= Product (not commutative)

= Inversion (square, full rank)

* Transposition



Scalar Multiplication & Sum

= In the scalar multiplication, every element
of the vector or matrix is multiplied with the
scalar

= The sum of two vectors is a vector
consisting of the pair-wise sums of the
individual entries

= The sum of two matrices is a matrix
consisting of the pair-wise sums of the
individual entries




Matrix Vector Product

= The ith component of A - b is the dot product
al -b
= The vector A - b is linearly dependent from
{a.;} with coefficients {b;}

Ab=|% [.b=|22P | =Y a, .y
: : .
\ag* \ag*'b) I
t

row vectors column vectors



Matrix Vector Product

= If the column vectors of A represent a
reference system, the product A - b
computes the global transformation of the

vector b according to {a.;}

column vectors




Matrix Matrix Product

= Can be defined through
= the dot product of row and column vectors

» the linear combination of the columns of A
scaled by the coefficients of the columns of B

C = AB

T T T
( . b1 aj, byo - - bam )
— ADy - b.1 Ay b.o - ADy by
\ ag* ' b*l ag* ' b*2 T ag* - bam )

(A-b*l A - b, ...A-b*m)



Matrix Matrix Product

= If we consider the second interpretation,
we see that the columns of C are the
“global transformations” of the columns
of B through A

= All the interpretations made for the matrix
vector product hold

C = AB
— (A-b*l A b, ...A-b*m)
Cxi — A'b*i



Linear Systems (1)

Ax =Db

Interpretations:
= A set of linear equations

= A way to find the coordinates x in the
reference system of A such that b is the
result of the transformation of Ax

= Solvable by Gaussian elimination
(as taught in school)



Linear Systems (2)

Ax =Db

Notes:

= Many efficient solvers exit, e.g., conjugate
gradients, sparse Cholesky decomposition

= One can obtain a reduced system (A’, b") by
considering the matrix (A, b) and suppressing all
the rows which are linearly dependent

= Let A'X=b' the reduced system with A':n'xm and
b':n'x1 and rank A' = min(n',m) rows? ™ columns

= The system might be either over-constrained
(n’">m) or under-constrained (n'<m)



Over-Constrained Systems

= "More (indep) equations than variables”

= An over-constrained system does not
admit an exact solution

= However, if rank A” = cols(A) one may
find a minimum norm solution by
closed form pseudo inversion

x = argmin||A’x — b/|| = (AT A) 1A Y
X

Note: rank = Maximum number of linearly independent rows/columns



Under-Constrained Systems

= “"More variables than (indep) equations”

= The system is under-constrained if the
number of linearly independent rows (or
columns) of A’ is smaller than the
dimension of b’

= An under-constrained system admits infinite
solutions

= The degree of these infinite solutions is
cols(A”) - rows(A’)



Inverse

AB =1

= If A is a square matrix of full rank, then
there is a unique matrix B=A-1 such that
AB=I holds

= The ith row of A is and the ji" column of A1
dre.
= orthogonal (if i #J)
= or their dot product is 1 (if i = j)



Matrix Inversion
AB =1

= The jth column of A1 can be found by
solving the following linear system:

A_a_— 1 p— i - This is the it column
*1 *1 of the identity matrix



Trace (tr)

= Only defined for square matrices
= Sum of the elements on the main diagonal, that is

n
tI‘(A) — a11 +a22 + - _I_ann — Zaii
1=1

= Jtis a linear operator with the following properties

= Additivity:  tr(A+ B) = tr(A) + tr(B)

= Homogeneity: tr(cA) =c x tr(A4)

= Pairwise commutative: tr(AB) = tr(BA), tr(ABC) # tr(ACB)
= Trace is similarity invariant  tr(P *AP) = tr((AP™1)P) = tr(A)

= Trace is transpose invariant  tr(A4) = tr(A7)

= Given two vectors @ and b, tr(a” b)=tr(a b")



Rank

= Maximum number of linearly independent rows (columns)
= Dimension of the image of the transformation f(x) = Ax

= When A is m xn we have
= rank(A) > 0 and the equality holds iff A is the null matrix
= rank(A) < min(m,n)
= f(x) is injective iff rank(A) =n
= f(x) is surjective iff rank(A4) =m
= ifm =mn,f(x) is bijective and A is invertible iff rank(A) = n

= Computation of the rank is done by
= Gaussian elimination on the matrix
= Counting the number of non-zero rows



Determinant (det)

= Only defined for square matrices
= The inverse of A exists if and only if det(A) # 0
= For 2 x 2 matrices:

Let A = [a,,;j] and ‘A‘ = det(A) , then

aip ai2
az1 a22

— Q11 *A22 — Q12 - 421

= For3 x 3 matrices the Sarrus rule holds:

aji. Qi2. ai3. |
o1 (o G953 = 11022033 + @12a923a31 + 13021032

st e “ass |
—@11023032 — 12021033 — A13022011



Determinant

For general n x n matrices?

Let A;; be the submatrix obtained from A
by deleting the i-zh row and the j-z4 column

1 2 5 0 |
1 5 0

2 3 4 -1
Ay = =
58 0 0 - A (2)_4201

0 4 -2 0 |

Rewrite determinant for 3 x 3 matrices:

3x3
det(A°"°) = ai1a99a33 + a12a23a31 + 413021032

—Qa11G23032 — 412021033 — 413022011

= a1 -det(Aq1) — a1z - det(Aq1z) + a3 - det(Aqs)



Determinant

= For general n x n matrices?

det(A) = ajpidet(Aq1r) — aradet(Ais) + ...+ (=1)'"ay, det(Aq,)
— Z(—l)lﬂaljdet(Alj)
j=1

Let C,;; = (—1)""/det(A;;) be the (ij)-cofactor, then

det(A) = a11C11 +a12C12 + ... +a1,C1p,
= 2 a;Cy
=1

This is called the cofactor expansion across the first row



Determinant

Problem: Take a 25 x 25 matrix (which is considered small).

The cofactor expansion method requires n! multiplications.
For n = 25, thisis 1.5 x 10”25 multiplications for which a
today supercomputer would take 500,000 years.

There are much faster methods, namely using Gauss
elimination to bring the matrix into triangular form.

dl * * *
0 dg * *
0 0 d3 *
0 0 0 dy

det(A)

— H?:l di

Because for triangular matrices the determinant is the

product of diagonal elements



Determinant: Properties

= Row operations (A is still a n x n square matrix)

= If B results from A by interchanging two rows,
then det(B) = —det(A)

= If B results from A by multiplying one row with a number ¢,
then det(B) = ¢ - det(A)

= If B results from A by adding a multiple of one row to another
row, then det(B) = det(A)

» Transpose: det(AT) = det(A)
= Multiplication: det(A - B) = det(A) - det(B)

= Does not apply to addition! det(A + B) # det(A) + det(B)



Determinant: Applications

adj(A)

= Find the inverse A ! using Cramer’srule A—1 =
J det(A)

with adj(A) being the adjugate of A

[ C11 Co1 -+ Cp1
adj(A) = 0:12 Coo -+ Cp2
\Cln Cop - Onn)

with Cj; being the cofactors of A, i.e.,

Cij = (—1)""det(Aj)




Determinant: Applications

adj(A)
det(A)

= Find the inverse A1 using Cramer's rule A~! =
with adj(A) being the adjugate of A

= Compute Eigenvalues:
Solve the characteristic polynomial det(A —A-I) =0

= Area and Volume: area = |det(A)]

(a+c,b+d)

S )

|

(7; is i-th row)

o> o o

Q Q. 2




Orthonormal Matrix

= A matrix @ is orthonormal iff its column (row)
vectors represent an orthonormal basis

- (1 ifi=5

= As linear transformation, it is norm preserving

= Some properties:
= The transpose is the inverse QR =0QTQ =1
= Determinant has unity norm (§ 1)

1 =det(I) = det(QT Q) = det(Q)det(Q") = det(Q)?



Rotation Matrix

A Rotation matrix is an orthonormal matrix with det =+1

= 2D Rotations _ | cos(t) —sin(0)
R(0) sin(f)  cos(0)
= 3D Rotations along the main axes
! 0 0 | ~ cos() 0
R.(0) =1 0 cos(f) —sin(f) R,(0) = 0 1
| 0 sin(f)  cos(0) | sin(f) 0
IMPORTANT: Rotations are not commutative
- - [ 0.707 0 —0.707 | . - 1
| 0.5 0.707 0.5 | | 3
. . [ 0.707 —-0.5 —0.5 - - [ 1
| 0.707 0.5 0.5 |3

—sin(6) |
0
cos(6)

[ —1.414 |
0.586
3.414

~1.793
0.707
3.207




Matrices to Represent Affine
Transformations

= A general and easy way to describe a 3D
transformation is via matrices

Translation Vector

(B0 e ()

Rotation Matrix

= Takes naturally into account the non-
commutativity of the transformations

= See: homogeneous coordinates



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

p



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

® Bp gives the pose of the
object wrt the robot

v
[ ]
[




Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

Bp gives the pose of the
object wrt the robot

®. o

0

ABp gives the pose of the
object wrt the world

D



Symmetric Matrix

1 4 =2
= A matrix 4 is symmetricif 4 — AT ,e.g.| 4 -1 3
-2 3 9
_ 0 4 -2
= A matrix A is skew-symmetricif A=-4",e.qg.| 4 o 3
2 =3 0

= Every symmetric matrix:

= is diagonalizable D = QAQ", where D is a diagonal matrix
of eigenvalues and () is an orthogonal matrix whose columns
are the eigenvectors of A

T
= define a quadratic form ¢(x) = x! Ax = Z ;5 T; T
1,,J=1



Positive Definite Matrix

= The analogous of positive number

= Definition M > 0iff 2zl Mz > OVz # O

= Example

1 1
m Mlzloi)],{zl ZQ}IO?][Z;]:Z%+Z§>O



Positive Definite Matrix

= Properties
= Invertible, with positive definite inverse
= All real eigenvalues > 0
= Traceis > 0
= Cholesky decomposition A = LI,



Jacobian Matrix

= Jtis a non-square matrix »n x m in general

= Given a vector-valued function

[ f1(x) |
f2§X)

i fm.(X) i

f(x) =

= Then, the Jacobian matrix is defined as

- df1 Of1 Of1 |
oriy Oxzo ~°° Ozp
9f>  9f> dfo

Fy = | 9z1 Jdzp *°° Omy
Ofm Ofm Ofm
| Jdxrp Jzp "7 Oxp




Jacobian Matrix

= Jt is the orientation of the tangent
plane to the vector-valued function at a
given point

= Generalizes the gradient of a scalar
valued function



Quadratic Forms

= Many functions can be locally approximated
with quadratic form

f(x) = Zawx@aﬁj Zb x; + ¢

— TAX—l—bX—|—C

= Often, one is interested in finding the
minimum (or maximum) of a quadratic
form, i.e.,

X = arg}r{nin f(x)



Quadratic Forms
= Question: How to efficiently compute a
solution to this minimization problem

X = argmin f(x)
X

= At the minimum, we have (%) =0

= By using the definition of matrix product,
we can compute f’

XTAX—l—bX—|—C
ATx—I—Ax—I—b

f(x)
(%)



Quadratic Forms

= The minimum of f(x) = x'Ax+ bx+ ¢ is
where its derivative is O

0 = Alx+Ax+b
= Thus, we can solve the system
(AT +A)x = —b

= If the matrix is symmetric, the system
becomes

2Ax = —Db

= Solving that, leads to the minimum



Further Reading

= A "quick and dirty” guide to matrices is the
Matrix Cookbook available at:

http://matrixcookbook.com



http://matrixcookbook.com/

