Introduction to Mobile Robotics

Compact Course on Linear Algebra

Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz
Vectors

- Arrays of numbers
- Vectors represent a point in a n dimensional space

\[
\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}
\]
Vectors: Scalar Product

- Scalar-Vector Product ka
- Changes the length of the vector, but **not** its direction
Vectors: Sum

- Sum of vectors (is commutative)

\[
\begin{pmatrix}
a_1 \\ a_2 \\ \vdots \\ a_n \\
\end{pmatrix} + \begin{pmatrix}
b_1 \\ b_2 \\ \vdots \\ b_n \\
\end{pmatrix} = \begin{pmatrix}
b_1 \\ b_2 \\ \vdots \\ b_n \\
\end{pmatrix} + \begin{pmatrix}
a_1 \\ a_2 \\ \vdots \\ a_n \\
\end{pmatrix}
\]

- Can be visualized as “chaining” the vectors.
Vectors: Dot Product

- Inner product of vectors (is a scalar)
 \[a \cdot b = b \cdot a = \sum_{i} a_i b_i \]

- If one of the two vectors, e.g. \(a \), has \(\|a\| = 1 \) the inner product \(a \cdot b \) returns the length of the projection of \(b \) along the direction of \(a \)

- If \(a \cdot b = 0 \), the two vectors are orthogonal
Vectors: Linear (In)Dependence

- A vector \mathbf{b} is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$ if
 \[\mathbf{b} = \sum_i k_i \mathbf{a}_i \]

- In other words, if \mathbf{b} can be obtained by summing up the \mathbf{a}_i properly scaled

- If there exist no $\{k_i\}$ such that
 \[\mathbf{b} = \sum_i k_i \mathbf{a}_i \]
 then \mathbf{b} is independent from $\{\mathbf{a}_i\}$
Vectors: Linear (In)Dependence

- A vector \(\mathbf{b} \) is **linearly dependent** from \(\{a_1, a_2, \ldots, a_n\} \) if \(\mathbf{b} = \sum_i k_i a_i \)

- In other words, if \(\mathbf{b} \) can be obtained by summing up the \(a_i \) properly scaled

- If there exist no \(\{k_i\} \) such that \(\mathbf{b} = \sum_i k_i a_i \) then \(\mathbf{b} \) is independent from \(\{a_i\} \)
Matrices

- A matrix is written as a table of values

$$A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix} \quad A : n \times m$$

- **1st index** refers to the row
- **2nd index** refers to the column
- Note: a d-dimensional vector is equivalent to a d×1 matrix
Matrices as Collections of Vectors

- Column vectors

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix} \]
Matrices as Collections of Vectors

- Row vectors

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & & & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix} \rightarrow \begin{pmatrix}
 a_{1*}^T \\
 a_{2*}^T \\
 \vdots \\
 a_{n*}^T
\end{pmatrix} \]
Important Matrices Operations

- Multiplication by a scalar
- Sum (commutative, associative)
- Multiplication by a vector
- Product (not commutative)
- Inversion (square, full rank)
- Transposition
Scalar Multiplication & Sum

- In the scalar multiplication, every element of the vector or matrix is multiplied with the scalar.
- The sum of two vectors is a vector consisting of the pair-wise sums of the individual entries.
- The sum of two matrices is a matrix consisting of the pair-wise sums of the individual entries.
Matrix Vector Product

- The i^{th} component of $A \cdot b$ is the dot product $a_{i*}^T \cdot b$.
- The vector $A \cdot b$ is linearly dependent from $\{a_{*i}\}$ with coefficients $\{b_i\}$.

\[
A \cdot b = \left(\begin{array}{c}
 a_{1*}^T \\
 a_{2*}^T \\
 \vdots \\
 a_{n*}^T
\end{array} \right) \cdot b = \left(\begin{array}{c}
 a_{1*}^T \cdot b \\
 a_{2*}^T \cdot b \\
 \vdots \\
 a_{n*}^T \cdot b
\end{array} \right) = \sum_k a_{*k} \cdot b_k
\]
Matrix Vector Product

- If the column vectors of A represent a reference system, the product $A \cdot b$ computes the global transformation of the vector b according to $\{a_{*i}\}$.

\[\begin{align*}
 \text{column vectors} \\
 b_1a_{*1} & \quad \quad \quad b_2a_{*2} \\
 A \cdot b
\end{align*} \]
Matrix Matrix Product

- Can be defined through
 - the dot product of row and column vectors
 - the linear combination of the columns of A scaled by the coefficients of the columns of B

\[
C = AB
= \begin{pmatrix}
 a_{11}^T \cdot b_{*1} & a_{12}^T \cdot b_{*2} & \cdots & a_{1m}^T \cdot b_{*m} \\
 a_{21}^T \cdot b_{*1} & a_{22}^T \cdot b_{*2} & \cdots & a_{2m}^T \cdot b_{*m} \\
 \vdots \\
 a_{n1}^T \cdot b_{*1} & a_{n2}^T \cdot b_{*2} & \cdots & a_{nm}^T \cdot b_{*m}
\end{pmatrix}
= \begin{pmatrix}
 A \cdot b_{*1} & A \cdot b_{*2} & \cdots & A \cdot b_{*m}
\end{pmatrix}
\]
Matrix Matrix Product

- If we consider the second interpretation, we see that the columns of C are the “global transformations” of the columns of B through A
- All the interpretations made for the matrix vector product hold

\[
C = AB \\
= \left(\begin{array}{c} A \cdot b_{*1} \\ A \cdot b_{*2} \\ \vdots \\ A \cdot b_{*m} \end{array} \right) \\
c_{*i} = A \cdot b_{*i}
\]
Linear Systems (1)

$$Ax = b$$

Interpretations:
- A set of linear equations
- A way to find the coordinates x in the reference system of A such that b is the result of the transformation of Ax
- Solvable by Gaussian elimination (as taught in school)
Linear Systems (2)

\[Ax = b \]

Notes:

- Many efficient solvers exist, e.g., conjugate gradients, sparse Cholesky decomposition.
- One can obtain a reduced system \((A', b')\) by considering the matrix \((A, b)\) and suppressing all the rows which are linearly dependent.
- Let \(A'x = b' \) the reduced system with \(A':n'x_m \) and \(b':n'x_1 \) and rank \(A' = \min(n',m) \) rows \(\uparrow \) columns.
- The system might be either over-constrained \((n' > m)\) or under-constrained \((n' < m)\).
Over-Constrained Systems

- “More (indep) equations than variables”
- An over-constrained system does not admit an exact solution
- However, if \(\text{rank } A' = \text{cols}(A) \) one may find a minimum norm solution by closed form pseudo inversion

\[
x = \arg\min_x \| A'x - b' \| = (A'^T A')^{-1} A'^T b'
\]

Note: rank = Maximum number of linearly independent rows/columns
Under-Constrained Systems

- “More variables than (indep) equations”
- The system is **under-constrained** if the number of linearly independent rows (or columns) of A' is smaller than the dimension of b'
- An under-constrained system admits infinite solutions
- The degree of these infinite solutions is $\text{cols}(A') - \text{rows}(A')$
Inverse

\[AB = I \]

- If A is a square matrix of full rank, then there is a unique matrix \(B=A^{-1} \) such that \(AB=I \) holds.
- The \(i^{th} \) row of A is and the \(j^{th} \) column of \(A^{-1} \) are:
 - orthogonal (if \(i \neq j \))
 - or their dot product is 1 (if \(i = j \))
Matrix Inversion

\[AB = I \]

- The \(i^{th} \) column of \(A^{-1} \) can be found by solving the following linear system:

\[
A a^{-1} * i = i * i \]

This is the \(i^{th} \) column of the identity matrix.
Trace (tr)

- Only defined for **square matrices**
- **Sum** of the elements on the main diagonal, that is
 \[
 \text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}
 \]
- It is a linear operator with the following properties
 - Additivity: \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \)
 - Homogeneity: \(\text{tr}(cA) = c \times \text{tr}(A) \)
 - Pairwise commutative: \(\text{tr}(AB) = \text{tr}(BA), \ \text{tr}(ABC) \neq \text{tr}(ACB) \)
- Trace is similarity invariant \(\text{tr}(P^{-1}AP) = \text{tr}((AP^{-1})P) = \text{tr}(A) \)
- Trace is transpose invariant \(\text{tr}(A) = \text{tr}(A^T) \)
- Given two vectors \(a \) and \(b \), \(\text{tr}(a^T b) = \text{tr}(a b^T) \)
Rank

- **Maximum** number of linearly independent rows (columns)
- Dimension of the **image** of the transformation $f(x) = Ax$

When A is $m \times n$ we have
- $\text{rank}(A) \geq 0$ and the equality holds iff A is the null matrix
- $\text{rank}(A) \leq \min(m, n)$
- $f(x)$ is **injective** iff $\text{rank}(A) = n$
- $f(x)$ is **surjective** iff $\text{rank}(A) = m$
- if $m = n$, $f(x)$ is **bijective** and A is **invertible** iff $\text{rank}(A) = n$

Computation of the rank is done by
- Gaussian elimination on the matrix
- Counting the number of non-zero rows
Determinant (det)

- Only defined for square matrices
- The inverse of A exists if and only if $\det(A) \neq 0$
- For 2×2 matrices:
 Let $A = [a_{ij}]$ and $|A| = \det(A)$, then
 \[
 \begin{vmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{vmatrix}
 = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}
 \]

- For 3×3 matrices the Sarrus rule holds:
 \[
 \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{vmatrix}
 = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}

 - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}
 \]
For general $n \times n$ matrices?

Let A_{ij} be the submatrix obtained from A by deleting the i-th row and the j-th column.

$$
\begin{pmatrix}
 1 & 2 & 5 & 0 \\
 2 & 3 & 4 & -1 \\
 -5 & 8 & 0 & 0 \\
 0 & 4 & -2 & 0 \\
\end{pmatrix} \quad \Rightarrow \quad A_{32} =
\begin{pmatrix}
 1 & 5 & 0 \\
 2 & 4 & -1 \\
 0 & -2 & 0 \\
\end{pmatrix}
$$

Rewrite determinant for 3×3 matrices:

$$
\det(A^{3\times3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11} = a_{11} \cdot \det(A_{11}) - a_{12} \cdot \det(A_{12}) + a_{13} \cdot \det(A_{13})
$$
Determinant

- For general $n \times n$ matrices?

$$\det(\mathbf{A}) = a_{11} \det(\mathbf{A}_{11}) - a_{12} \det(\mathbf{A}_{12}) + \ldots + (-1)^{1+n} a_{1n} \det(\mathbf{A}_{1n})$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(\mathbf{A}_{1j})$$

Let $\mathbf{C}_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij})$ be the (i,j)-cofactor, then

$$\det(\mathbf{A}) = a_{11} \mathbf{C}_{11} + a_{12} \mathbf{C}_{12} + \ldots + a_{1n} \mathbf{C}_{1n}$$

$$= \sum_{j=1}^{n} a_{1j} \mathbf{C}_{1j}$$

This is called the **cofactor expansion** across the first row.
Problem: Take a 25 x 25 matrix (which is considered small). The cofactor expansion method requires n! multiplications. For n = 25, this is 1.5 x 10^25 multiplications for which a today supercomputer would take **500,000 years**.

- There are **much faster methods**, namely using **Gauss elimination** to bring the matrix into triangular form.

\[
A = \begin{bmatrix}
d_1 & * & * & * \\
0 & d_2 & * & * \\
0 & 0 & d_3 & * \\
0 & 0 & 0 & d_4
\end{bmatrix}
\]

\[
\text{det}(A) = \prod_{i=1}^{n} d_i
\]

Because for **triangular matrices** the determinant is the product of diagonal elements
Determinant: Properties

- **Row operations** \((A\text{ is still a } n \times n \text{ square matrix})\)
 - If \(B\) results from \(A\) by interchanging two rows, then \(det(B) = -det(A)\)
 - If \(B\) results from \(A\) by multiplying one row with a number \(c\), then \(det(B) = c \cdot det(A)\)
 - If \(B\) results from \(A\) by adding a multiple of one row to another row, then \(det(B) = det(A)\)

- **Transpose**: \(det(A^T) = det(A)\)

- **Multiplication**: \(det(A \cdot B) = det(A) \cdot det(B)\)

- Does **not** apply to addition! \(det(A + B) \neq det(A) + det(B)\)
Determinant: Applications

- Find the inverse A^{-1} using Cramer’s rule $A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)}$

 with $\text{adj}(A)$ being the adjugate of A

$$\text{adj}(A) = \begin{pmatrix}
C_{11} & C_{21} & \cdots & C_{n1} \\
C_{12} & C_{22} & \cdots & C_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1n} & C_{2n} & \cdots & C_{nn}
\end{pmatrix}$$

with C_{ij} being the cofactors of A, i.e.,

$$C_{ij} = (-1)^{i+j} \text{det}(A_{ij})$$
Determinant: Applications

- **Find the inverse** A^{-1} using Cramer’s rule $A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)}$ with $\text{adj}(A)$ being the adjugate of A

- **Compute Eigenvalues:**
 Solve the characteristic polynomial $\text{det}(A - \lambda \cdot I) = 0$

- **Area and Volume:** $\text{area} = |\text{det}(A)|$

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{area} = \frac{ad - bc}{(a,b)} \quad (r_i \text{ is } i\text{-th row}) \]
Orthonormal Matrix

- A matrix Q is orthonormal iff its column (row) vectors represent an orthonormal basis

\[
q_i^T \cdot q_j = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}, \forall i, j
\]

- As linear transformation, it is norm preserving

- Some properties:
 - The transpose is the inverse $QQ^T = Q^T Q = I$
 - Determinant has unity norm (\S 1)

 \[
 1 = \det(I) = \det(Q^T Q) = \det(Q) \det(Q^T) = \det(Q)^2
 \]
Rotation Matrix

- A Rotation matrix is an orthonormal matrix with det = +1
 - 2D Rotations
 \[R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \]
 - 3D Rotations along the main axes
 \[R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \]
 - IMPORTANT: Rotations are not commutative

\[
R_x\left(\frac{\pi}{4}\right) \cdot R_y\left(\frac{\pi}{4}\right) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, \quad R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}
\]

\[
R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, \quad R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}
\]
Matrices to Represent Affine Transformations

- A general and easy way to describe a 3D transformation is via matrices

\[
A = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \quad A^{-1} = \begin{pmatrix} R^T & -R^T t \\ 0 & 1 \end{pmatrix} \quad p = \begin{pmatrix} t \\ 1 \end{pmatrix}
\]

- Takes naturally into account the non-commutativity of the transformations

- See: homogeneous coordinates
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

\[\text{Diagram showing the relationship between the robot, sensor, and object.} \]
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives the pose of the object wrt the robot
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world
Symmetric Matrix

- A matrix A is **symmetric** if $A = A^T$, e.g.
 $$
 \begin{bmatrix}
 1 & 4 & -2 \\
 4 & -1 & 3 \\
 -2 & 3 & 5
 \end{bmatrix}
 $$

- A matrix A is **skew-symmetric** if $A = -A^T$, e.g.
 $$
 \begin{bmatrix}
 0 & 4 & -2 \\
 -4 & 0 & 3 \\
 2 & -3 & 0
 \end{bmatrix}
 $$

- **Every** symmetric matrix:
 - is **diagonalizable** $D = QAQ^T$, where D is a diagonal matrix of **eigenvalues** and Q is an orthogonal matrix whose columns are the **eigenvectors** of A
 - define a **quadratic form** $q(x) = x^T A x = \sum_{i,j=1}^{n} a_{ij} x_i x_j$
Positive Definite Matrix

- The analogous of positive number

- Definition: $M > 0$ iff $z^T M z > 0 \forall z \neq 0$

- Example

 $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$
Positive Definite Matrix

- Properties
 - **Invertible**, with positive definite inverse
 - All real **eigenvalues** > 0
 - **Trace** is > 0
 - **Cholesky** decomposition \(A = LL^T \)
Jacobian Matrix

- It is a **non-square matrix** $n \times m$ in general
- Given a vector-valued function

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix}$$

- Then, the **Jacobian matrix** is defined as

$$F_x = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$
Jacobian Matrix

- It is the orientation of the **tangent plane** to the vector-valued function at a given point

- **Generalizes the gradient** of a scalar valued function
Quadratic Forms

- Many functions can be locally approximated with **quadratic form**

\[
f(x) = \sum_{i,j} a_{ij} x_i x_j + \sum_i b_i x_i + c \\
= x^T A x + b x + c
\]

- Often, one is interested in finding the minimum (or maximum) of a quadratic form, i.e.,

\[
\hat{x} = \arg \min_x f(x)
\]
Quadratic Forms

- Question: How to efficiently compute a solution to this minimization problem

\[\hat{x} = \arg\min_x f(x) \]

- At the minimum, we have \(f'(\hat{x}) = 0 \)
- By using the definition of matrix product, we can compute \(f' \)

\[
\begin{align*}
 f(x) & = x^T Ax + bx + c \\
 f'(x) & = A^T x + Ax + b
\end{align*}
\]
Quadratic Forms

- The minimum of \(f(x) = x^T A x + bx + c \) is where its derivative is 0
 \[
 0 = A^T x + A x + b
 \]
- Thus, we can solve the system
 \[
 (A^T + A)x = -b
 \]
- If the matrix is symmetric, the system becomes
 \[
 2Ax = -b
 \]
- Solving that, leads to the minimum
Further Reading

- A “quick and dirty” guide to matrices is the Matrix Cookbook available at: http://matrixcookbook.com