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Why Mapping?

� Learning maps is one of the fundamental 
problems in mobile robotics

� Maps allow robots to efficiently carry out 
their tasks, allow localization …

� Successful robot systems rely on maps for 
localization, path planning, activity 
planning etc.
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The General Problem of 
Mapping

What does the 
environment look like?
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The General Problem of 
Mapping

� Formally, mapping involves, given the 
sensor data,

to calculate the most likely map
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Mapping as a Chicken and Egg 
Problem

� So far we learned how to estimate the pose 
of the vehicle given the data and the map.

� Mapping, however, involves to 
simultaneously estimate the pose of the 
vehicle and the map.

� The general problem is therefore denoted 
as the simultaneous localization and 
mapping problem (SLAM).

� Throughout this section we will describe 
how to calculate a map given we know the 
pose of the vehicle.
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Types of SLAM-Problems

� Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

� Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Problems in Mapping

� Sensor interpretation
� How do we extract relevant information
from raw sensor data?

� How do we represent and integrate this 
information over time?

� Robot locations have to be estimated
� How can we identify that we are at a 
previously visited place?

� This problem is the so-called data 
association problem.
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Occupancy Grid Maps

� Introduced by Moravec and Elfes in 1985

� Represent environment by a grid.

� Estimate the probability that a location is 
occupied by an obstacle.

� Key assumptions
� Occupancy of individual cells (m[xy]) is 
independent

� Robot positions are known!
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Updating Occupancy Grid Maps
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� Idea: Update each individual cell using 
a binary Bayes filter.

� Additional assumption: Map is static.
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Updating Occupancy Grid Maps

� Update the map cells using the inverse 
sensor model

� Or use the log-odds representation
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Typical Sensor Model 
for Occupancy Grid Maps

Combination of a linear function and a Gaussian:
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Key Parameters of the Model
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z+d1 z+d2

z+d3z

z-d1

Occupancy Value Depending on 
the Measured Distance
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Deviation from the Prior Belief
(the sphere of influence of the sensors)
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Calculating the Occupancy 
Probability Based on Single 
Observations
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Incremental Updating 
of Occupancy Grids (Example) 
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Resulting Map Obtained with 
Ultrasound Sensors
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Resulting Occupancy and 
Maximum Likelihood Map

The maximum likelihood map is obtained by 
clipping the occupancy grid map at a 
threshold of 0.5 
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Occupancy Grids: From scans to maps
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Tech Museum, San Jose

CAD map occupancy grid map
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Alternative: Simple Counting

� For every cell count
� hits(x,y): number of cases where a beam 
ended at <x,y>

� misses(x,y): number of cases where a 
beam passed through <x,y>

� Value of interest: P(reflects(x,y))
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The Measurement Model
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Computing the Most Likely Map

� Compute values for m that maximize

� Assuming a uniform prior probability for p(m), this 
is equivalent to maximizing (applic. of Bayes rule)
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Computing the Most Likely Map
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Meaning of ααααj and ββββj
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corresponds to the number of times a 
beam that is not a maximum range 
beam ended in cell j (hits(j))

corresponds to the umber of times a 
beam intercepted cell j without ending 
in it (misses(j)).
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Computing the Most Likely Map
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Difference between Occupancy 
Grid Maps and Counting

� The counting model determines how often 
a cell reflects a beam.

� The occupancy model represents whether 
or not a cell is occupied by an object.

� Although a cell might be occupied by an 
object, the reflection probability of this 
object might be very small.
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Example Occupancy Map
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Example Reflection Map

glass panes
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Example

� Out of 1000 beams only 60% are reflected from a 
cell and 40% intercept it without ending in it.

� Accordingly, the reflection probability will be 0.6.

� Suppose p(occ | z) = 0.55 when a beam ends in a 
cell and p(occ | z) = 0.45 when a cell is 
intercepted by a beam that does not end in it.

� Accordingly, after n measurements we will have 

� Whereas the reflection map yields a value of 0.6, 
the occupancy grid value converges to 1.
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Summary

� Occupancy grid maps are a popular approach to represent 
the environment of a mobile robot given known poses.

� In this approach each cell is considered independently from 
all others.

� It stores the posterior probability that the corresponding area 
in the environment is occupied.

� Occupancy grid maps can be learned efficiently using a 
probabilistic approach.

� Reflection maps are an alternative representation.

� They store in each cell the probability that a beam is 
reflected by this cell. 

� We provided a sensor model for computing the likelihood of 
measurements and showed that the counting procedure 
underlying reflection maps yield the optimal map. 


