Einführung in die Informatik Arrays & Matrices

Arrays & Matrizen

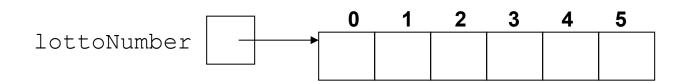
Cyrill Stachniss Wolfram Burgard

Arrays

- Array ist ebenso wie die primitiven Datentypen ein eingebauter Datentyp für Kollektionen.
- Arrays haben verschiedene Gemeinsamkeiten mit ArrayListen:
 - es enthält mehrere Elemente,
 - auf jedes Element kann durch einen Index zugegriffen werden,
 - die erste Position ist 0,
 - Arrays werden durch die new-Operation erzeugt,
 - ein Array ist ein Objekt und
 - für Arrays werden Referenzvariablen verwendet.

Unterschiede zwischen Array und ArrayList

- Für Arrays gibt keine Klasse.
- Arrays sind ebenso wie primitive Datentypen in die Sprache eingebaut.
- Es gibt keine Methoden für Arrays.
- Jedem Array ist eine Variable length zugeordnet, welche als Wert die Anzahl der Felder des Arrays enthält.
- Arrays können im Gegensatz zu ArrayListen primitive Datentypen wie z.B. int enthalten.
- Arrays haben eine feste Größe. Ihre Länge wächst nicht automatisch wie die von ArrayListen.
- Arrays sind, da sie von der Sprache direkt zur Verfügung gestellt werden, effizienter als ArrayListen.


Deklaration und Erzeugung von Arrays

 Bei der Deklaration einer Referenzvariable für ein Array, geben wir ebenfalls den Typ der Elemente an:

```
int[] lottoNumber;
String[] winner;
Employee[] emp;
```

 Um ein Array zu erzeugen, verwenden wir ebenfalls den new-Operator. Dabei geben wir den Typ der Elemente und ihre Anzahl an:

```
lottoNumber = new int[6];
winner = new String[100];
emp = new Employee[1000];
```


Zugriff auf die Elemente eines Arrays

 Um das Element an Position k eines Arrays auf einen bestimmten Wert zu setzen, verwenden wir eine Wertzuweisung der Form:

```
lottoNumber[k] = value;
```

 Um auf ein Element eines Arrays zuzugreifen verwendet man die eckigen Klammern:

```
n = lottoNumber[3];
```

 Zugriffe auf die Elemente eines Arrays lassen sich natürlich auch schachteln:

```
s = winner[z[3]];
```

Mehrdimensionale Arrays

- Arrays können nicht nur eindimensional, sondern auch mehrdimensional sein.
- Für ein zweidimensionales Feld von double-Werten wird beispielsweise folgende Deklaration verwendet.

```
public double[][] value;
```

Erzeugen eines zweidimensionale Felds mittels

```
value = new double[m][n];
```

 Der Zugriff auf die Elemente eines zweidimensionalen Arrays wirdfolgendermaßen durchgeführt:

```
value[i][j] = 3.0;
```

Matrizen: Anwendung zweidimensionaler Arrays

Eine Matrix ist die Anordnung von m*n Werten in einer Tabelle von m Zeilen und n Spalten. Dabei heißt eine Matrix quadratisch, falls m==n.

Eine $m \times n$ Matrix hat die Form:

$$\begin{pmatrix}
a[0] & [0] & \cdots & a[0] & [n-1] \\
\vdots & \ddots & \vdots & \vdots \\
a[m-1] & [0] & \cdots & a[m-1] & [n-1]
\end{pmatrix}$$

Eine typische Matrizenoperation ist das Transponieren, d.h. das Vertauschen der Zeilen und Spalten einer Matrix.

Das Element an Position a [i] [j] der Transponierten entspricht dem Element a [j] [i] der Originalmatrix.

Eine einfache Klasse für Matrizen

```
class Matrix {
   public Matrix(int m, int n) {
        this.value = new double[m][n];
       this.m = m_i
       this.n = n_i
   public Matrix transposed() {
       Matrix mat = new Matrix(this.n, this.m);
        for (int i = 0; i < this.m; i++)
            for (int j = 0; j < this.n; j++)
                mat.value[i][i] = this.value[i][j];
            return mat;
   public void print() {
        for (int i = 0; i < this.m; i++) {
            for (int j = 0; j < this.n; j++)
                System.out.print(this.value[i][j] + " ");
            System.out.println();
   public double[][] value;
   public int m;
   public int n;
```

Eine kleine Beispielanwendung

```
class UseMatrix {
    public static void main(String [] args) {
          Matrix m = new Matrix(2,2);
          m.value[0][0] = m.value[1][0] = m.value[1][1] = 0.0;
          m.value[0][1] = 1.0;

          m.print();
          System.out.println();
          m.transposed().print();
    }
}
```

Dieses Programm erzeugt die Ausgabe

```
0.0 1.0
0.0 0.0
0.0 0.0
1.0 0.0
```

Zusammenfassung

- Arrays enthalten Kollektionen ähnlich wie ArrayList-Objekte.
- Die Objekte habe in dem Array eine bestimmte Ordnung.
- Der Index der Elemente in ArrayListen und Arrays beginnt bei 0.
- Mit Arrays lassen sich leicht mehrdimensionale Datenstrukturen erzeugen wie beispielsweise Matrizen