
Chapter 2

Basic Techniques

T
his chapter explains two techniques which are frequently used throughout
this thesis. First, wewill i ntroducethe concept of particlefilters. A particle
filter isa recursiveBayesian techniquefor estimatingthestateof adynamic
system. We then explain the ideas of grid maps and “mapping with known

poses” . Note that elementary laws in the context of probabilit y theory can be foundin
theAppendix A.1 of this thesis.

2.1 In troduction to Par ticleFil ters

A particlefilter isanonparametric implementation of theBayesfilter and is frequently
used to estimatethestateof adynamic system. Thekey ideais to represent aposterior
by aset of hypotheses. Each hypothesisrepresentsonepotential statethesystem might
be in. Thestatehypothesesare represented by aset S of N weighted random samples

S =
{〈

s[i], w[i]
〉
| i = 1, . . . , N

}
, (2.1)

where s[i] is the state vector of the i-th sample and w[i] the corresponding importance
weight. The weight is a non-zero value and the sum over all weights is 1. The sample
set represents thedistribution

p(x) =

N∑

i=1

wi · δs[i](x), (2.2)

whereδs[i] istheDiracfunctionin thestates[i] of thei-thsample. Such set S of samples
can be used to approximate arbitrary distributions. The samples are drawn from the
distribution they should approximate. To ill ustrate such an approximation, Figure 2.1
depicts two distributions and their corresponding sample sets. In general, the more

28 CHAPTER 2: BASIC TECHNIQUES
pr

ob
ab

ili
ty

 /
 w

ei
gh

t

x

f(x)
samples

pr
ob

ab
ili

ty
 /

 w
ei

gh
t

x

f(x)
samples

Figure2.1: Two functionsandtheir approximationsby sampleswith uniform weights.
Thesamplesare ill ustrated by thevertical bars below the two functions.

samples that are used, the better the approximation. The abilit y to model multi -modal
distributionsby theset of samples isan advantage compared to aseriesof other filters.
TheKalman filter [Kalman, 1960], for example, is restricted to Gaussian distributions.

Whenever we are interested in estimating thestateof a dynamic system over time,
we can use the particle filter algorithm. The ideaof this technique is to represent the
distributionat each point in timeby aset of samples, also called particles. Theparticle
filter algorithm allowsus to recursive estimate theparticleset St based onthe estimate
St−1 of the previous time step. The sampling importance resampling (SIR) particle
filter can besummarized with the following threesteps:

1. Sampling: Create the next generation S ′

t of particles based onthe previous set
St−1 of samples. This step is also called sampling or drawing from theproposal
distribution.

2. Impor tanceWeighting: Compute an importanceweight for each sample in the
set S ′

t.

3. Resampling: Draw N samples form the set S ′

t. Thereby, the likelihoodto draw
a particle is proportional to its weight. The new set St is given by the drawn
particles.

In the following, we explain these threesteps in more detail . In the first step, we
draw samples in order to obtain the next generation of particles for thenext timestep.
In general, the true probabilit y distribution to sample particles from is not known or
not in a suitable form for sampling. We show that it i s possible to draw samples from
adifferent distributionthan theonewewant to approximate. This technique isknown
as importance sampling.

2.1 INTRODUCTION TO PARTICLE FILTERS 29

We are faced with the problem of computing the expectation that x ∈ A, where A
isa region. In general, the expectationEp[f(x)] of a functionf is defined as

Ep[f(x)] =

∫

p(x) · f(x) dx. (2.3)

Let B be afunction which returns 1 if its argument is true and 0 otherwise. We can
expressthe expectation that x ∈ A by

Ep[B(x ∈ A)] =

∫

p(x) · B(x ∈ A) dx (2.4)

=

∫
p(x)

π(x)
· π(x) · B(x ∈ A) dx, (2.5)

whereπ isa distributionfor which we require that

p(x) > 0 ⇒ π(x) > 0. (2.6)

Thus, we can define aweight w(x) as

w(x) =
p(x)

π(x)
. (2.7)

Thisweight w isused to account for thedifferencesbetween p andtheπ. This leadsto

Ep[B(x ∈ A)] =

∫

π(x) · w(x) · B(x ∈ A) dx (2.8)

= Eπ[w(x) · B(x ∈ A)]. (2.9)

Let us consider again the sample-based representations and suppose the sample are
drawn from π. By countingall theparticles that fall i nto theregionA, we can compute
the integral of π over A by thesum over samples

∫

A

π(x) dx ≈
1

N
·

N∑

i=1

B(s[i] ∈ A). (2.10)

If we consider theweights in thiscomputation, we can compute the integral over p as

∫

A

p(x) dx ≈
N∑

i=1

w[i] · B(s[i] ∈ A). (2.11)

30 CHAPTER 2: BASIC TECHNIQUES

pr
ob

ab
ili

ty
 /

 w
ei

gh
t

x

proposal(x)
target(x)
samples

Figure2.2: Thegoal is to approximatethetarget distribution bysamples. Thesamples
are drawn from the proposal distribution and weighted according to Eq. (2.13). After
weighting, the resultingsampleset is an approximation of the target distribution.

It can beshown, that thequality of the approximation improves themoresamples that
are used. For an infinite set of samples, the sum over the samples converges to the
integral

lim
N→∞

N∑

i=1

w[i] · B(s[i] ∈ A) =

∫

A

p(x) dx. (2.12)

Let p be theprobabilit y distributionwhich isnot in asuitable form for samplingandπ
theonewe actually sample from. In the context of importancesampling, p is typically
called the target distribution andπ the proposal distribution.

This derivation tells us that we can sample from an arbitrary distributionπ which
fulfills Eq. (2.6) to approximate the distribution p by assigning an importanceweight
to each sample according to Eq. (2.7). This condition is needed to ensure that a state
which might be sampled from p does not have zero probabilit y under π. An exam-
ple that depicts a weighted set of samples in case the proposal is different from the
target distribution is shown in Figure 2.2. Note that the importance sampling prin-
ciple requires that we can point-wise evaluate the target distribution. Otherwise, the
computation of theweightswould be impossible.

Let p(s1:t | d) be the posterior to estimate, where d stands for all the data or
backgroundinformation. Theimportanceweighting performed inStep 2 of theparticle

2.1 INTRODUCTION TO PARTICLE FILTERS 31

filter implementation (seePage 28) accounts for the fact one draws from the proposal
π by setting theweight of each particle to

w
[i]
t = η ·

p(s
[i]
1:t | d)

π(s
[i]
1:t | d)

, (2.13)

whereη is thenormalizer that ensures that thesum over all weights is1.
The resampling step within a particle filter removes particles with a low impor-

tanceweight and replaces them by particles with ahigh weight. After resampling, the
weights are set to 1/N because by drawing according to the importanceweight, one
replaces “ likelihoods” by “ frequencies” .

Resamplingisneeded sinceweuseonly afinitenumber of samplesto approximate
the target distribution. Without resampling, typically most particles would represent
states with a low likelihoodafter some time and the filter would loose track of the
“good” hypotheses. On the one hand, this fact makes resampling important, on the
other hand removing samples from the filter can also be problematic. In practice, it
can happen that samples are replaced even if they are close to the correct state. This
can lead to the so-called particle depletion or particle deprivation problem [Doucet,
1998, Doucet et al., 2001, van der Merwe et al., 2000].

To reduce the risk of particle depletion, one can apply low-variance resampling.
This technique does not draw the particles independently of each other in the resam-
plingstep. Instead of generatingN random numbersto select N samples, the approach
uses only a single random number to choose the first particle. The others are drawn
depended on the first draw but still with a probabilit y proportional to the individual
weights. As a result, the particle set does not change during a resampling in case the
weightsare uniformly distributed. A detailed explanation onlow-varianceresampling
as well as on particle filters in general can be foundin [Thrun et al., 2005]. The com-
pleteparticlefilter algorithm is listed in Algorithm 2.1.

2.1.1 MobileRobot Localization using Par ticleFil ters

In the context of mobile robotics, particle filters are often used to track the position
of the robot. Since this technique is used in this thesis, we briefly ill ustrate the most
important facts of Monte-Carlo localization [Dellaert et al., 1998]. In this scenario,
the state vector s is the pose of the vehicle. Mostly, the motion estimate of the robot
resultingfrom odometry isused to computetheproposal distributionin Step 1. Theso-
called motionmodel p(xt | xt−1, ut−1) isused to draw thenext generation of particles.
In thiscase, the importanceweight w

[i]
t of the i-th samplehasto be computed based on

theobservationlikelihoodp(zt | m, x
[i]
t) of themost recent sensor observationzt given

amap m of the environment and the corresponding poseof theparticle. Thisbecomes

32 CHAPTER 2: BASIC TECHNIQUES

Algor ithm 2.1 Theparticlefilter algorithm
Input: Sampleset St−1 and thedatad.

1: S ′

t = ∅
2: for i=1 to N do
3: draw ŝ ∼ π(st | s

[i]
t−1, d)

4: ŵ = η ·
[

p(ŝ | s
[i]
t−1, d)

]

·
[

π(ŝ | s
[i]
t−1, d)

]
−1

// whereη isanormalizer

5: S ′

t = S ′

t + 〈ŝ, ŵ〉
6: end
7: St = ∅
8: for j=1 to N do
9: draw a samples

[i]
t from S ′

t. Thereby, s
[i]
t is drawn with probabilit y w

[i]
t

10: St = St +
〈

s
[i]
t , 1/N

〉

11: end
12: return St

clear by considering the following derivations. We can transform the full posterior
p(x1:t | m, z1:t, u1:t−1) and obtain a recursive formula

p(x1:t | m, z1:t, u1:t−1)
Bayes’ rule

= η · p(zt | m, x1:t, z1:t−1, u1:t−1)

·p(x1:t | m, z1:t−1, u1:t−1) (2.14)
Markov

= η · p(zt | m, xt)

·p(x1:t | m, z1:t−1, u1:t−1) (2.15)
product rule

= η · p(zt | m, xt)

·p(xt | m, x1:t−1, z1:t−1, u1:t−1)

·p(x1:t−1 | m, z1:t−1, u1:t−1) (2.16)
Markov

= η · p(zt | m, xt) · p(xt | xt−1, ut−1)

·p(x1:t−1 | m, z1:t−1, u1:t−2), (2.17)

where η is the normalizer resulting from Bayes’ rule. Under the Markov assumption,
we can transform theproposal as

π(x1:t | m, z1:t, u1:t) = π(xt | m, xt−1, zt, ut−1)

·π(x1:t−1 | m, z1:t−1, u1:t−2). (2.18)

The computation of theweightsneedsto bedone accordingtoEq. (2.13). In thesequel,

2.1 INTRODUCTION TO PARTICLE FILTERS 33

wedrop thenormalizer that ensures that all weights sum up to 1. This leads to

wt =
p(x1:t | m, z1:t, u1:t−1)

π(x1:t | m, z1:t, u1:t−1)
(2.19)

=
η · p(zt | m, xt) · p(xt | xt−1, ut−1)

π(x1:t | m, z1:t, u1:t−1)
· p(x1:t−1 | m, z1:t−1, u1:t−2) (2.20)

=
η · p(zt | m, xt) · p(xt | xt−1, ut−1)

π(xt | m, xt−1, zt, ut−1)
·
p(x1:t−1 | m, z1:t−1, u1:t−2)

π(x1:t−1 | m, z1:t−1, u1:t−2)
︸ ︷︷ ︸

wt−1

(2.21)

=
η · p(zt | m, xt) · p(xt | xt−1, ut−1)

π(xt | m, xt−1, zt, ut−1)
· wt−1. (2.22)

If we choose themotionmodel as theproposal, weobtain for the i-thesample

w
[i]
t =

η · p(zt | m, x
[i]
t) · p(xt | x

[i]
t−1, ut−1)

p(xt | x
[i]
t−1, ut−1)

· w
[i]
t−1 (2.23)

= η · p(zt | m, x
[i]
t) · w

[i]
t−1 (2.24)

∝ p(zt | m, x
[i]
t) · w

[i]
t−1. (2.25)

Since the resampling step resets the weights of the whole set by 1/N , we can ignore
theweight of theprevious timestep and obtain

w
[i]
t ∝ p(zt | m, x

[i]
t). (2.26)

This derivation shows that by choosing the motion model to draw the next generation
of particles, we have to use the observation likelihoodp(zt | m, xt) to compute the
individual weights.

To summarize this section, particle filters are a nonparametric implementations
of the recursive Bayes filter. They use aset of weighted samples and can represent
arbitrary distributions. The samples are drawn from a proposal distribution. After de-
terminingtheimportanceweightswhich account for thefact that thetarget distribution
is different from the proposal distribution, the resampling step replaces particles with
a low weight by particleswith ahigh importanceweight.

Throughout this thesis, we apply particlefilters to solve thesimultaneous localiza-
tionand mapping problem. Furthermore, we apply them in the context of information
gain-based exploration and to localize amobile robot in dynamically changing envi-
ronments.

34 CHAPTER 2: BASIC TECHNIQUES

2.2 Gr id Maps

There exist different types of models for representing the environment which are fre-
quently used in mobile robotics. The most common ones are feature maps, geometric
maps, and grid maps. A feature map stores a set of features detected in the envi-
ronment. Typical features are lines and corners when proximity sensors are used.
Other possibiliti es are visual features based on the scale invariant feature transform
(SIFT) [Lowe, 1999] whenever a camera is used to perceive the environment. For
each feature, these maps store the feature information together with a coordinate and
eventually an uncertainty measure. Thiscan berealized byalist of featuresor by using
more efficient datastructures likeKD-trees [Friedman et al., 1977, Bentley, 1980].

Geometric mapsrepresent all obstaclesdetected by therobot asgeometric objects,
li ke circlesor polygons. Thiskind of representation iscomparably compact and needs
only few memory resources.

Throughout this thesis, we use grid maps to model the environment. Grid maps
discretizethe environment into so-called grid cells. Each cell stores informationabout
the areait covers. Most frequently used are occupancy grid maps that store for each
cell asinglevaluerepresentingtheprobabilit y that thiscell i soccupied byan obstacle.
The advantage of grids is that they do not rely on predefined features which need
to be extracted from sensor data. Furthermore, they offer a constant time access to
grid cells and provide the abilit y to model unknown (unobserved) areas, which is an
important feature in the context of exploration. However, they have the disadvantages
of discretizationerrors and of requiring a lot of memory resources.

In this section, wefirst introducethe occupancy mappingalgorithm, developed by
Moravec and Elfes [1985]. Afterwards, we briefly describe a variant called reflec-
tion probabilit y maps. Both approaches are also referred to as “mapping with known
poses.”

2.2.1 Occupancy Probabili ty Mapping

Grid maps discretize the environment into equally sized cells. Each cell represents
the area of the environment it covers. It is assumed that each cell i s either free or
occupied by an obstacle. Occupancy grids store for each cell c a probabilit y p(c)
of being occupied by an obstacle. In the following, we will derive the map update
algorithm introduced byMoravec andElfeswhichcomputestheoccupancy probabilit y
p(m) for thegrid map m.

The algorithm takesintoaccount asequenceof sensor observationsz1:t obtained by
therobot at thepositionsx1:t andseeks to maximizetheoccupancy probabilit y for the
grid map. One assumption in the algorithm of Moravec and Elfes is that the different
cells are independent. Therefore, the probabilit y of a map m is given by the product

2.2 GRID MAPS 35

over theprobabiliti esof the individual cells

p(m) =
∏

c∈m

p(c). (2.27)

In the following, we concentrateon the estimation of theoccupancy probabilit y of the
individual cells c ∈ m. By applying Bayes’ rule using x1:t and z1:t−1 as background
knowledge, we obtain

p(c | x1:t, z1:t) =
p(zt | c, x1:t, z1:t−1) · p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.28)

We assumethat zt is independent from x1:t−1 and z1:t−1. This leads to

p(c | x1:t, z1:t) =
p(zt | c, xt) · p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.29)

We apply Bayes’ rule for the term p(zt | c, xt) in Eq. (2.29) and obtain

p(zt | c, xt) =
p(c | xt, zt) · p(zt | xt)

p(c | xt)
. (2.30)

We can now combine Eq. (2.30) and Eq. (2.29). Let us furthermore assume that xt

does not carry any informationabout c if there isno observationzt. This leads to

p(c | x1:t, z1:t) =
p(c | xt, zt) · p(zt | xt) · p(c | x1:t−1, z1:t−1)

p(c) · p(zt | x1:t, z1:t−1)
. (2.31)

If we exploit the fact that each cell i s a binary variable, we can derive the following
equation in an analogousway

p(¬c | x1:t, z1:t) =
p(¬c | xt, zt) · p(zt | xt) · p(¬c | x1:t−1, z1:t−1)

p(¬c) · p(zt | x1:t, z1:t−1)
. (2.32)

By dividingEq. (2.31) by Eq. (2.32), weobtain

p(c | x1:t, z1:t)

p(¬c | x1:t, z1:t)
=

p(c | xt, zt) · p(¬c) · p(c | x1:t−1, z1:t−1)

p(¬c | xt, zt) · p(c) · p(¬c | x1:t−1, z1:t−1)
. (2.33)

Finally, weuse the fact that p(¬c) = 1 − p(c) which yields

p(c | x1:t, z1:t)

1 − p(c | x1:t, z1:t)
=

p(c | xt, zt)

1 − p(c | xt, zt)
·
1 − p(c)

p(c)
·

p(c | x1:t−1, z1:t−1)

1 − p(c | x1:t−1, z1:t−1)
. (2.34)

36 CHAPTER 2: BASIC TECHNIQUES

If wedefine

Odds(x) =
p(x)

1 − p(x)
, (2.35)

Eq. (2.34) turns into

Odds(c | x1:t, z1:t) =

Odds(c | xt, zt) · Odds(c)−1 · Odds(c | x1:t−1, z1:t−1). (2.36)

This equation has a recursive structure similar to that of a recursive Bayesian update
scheme. The corresponding log Odds representation of Eq. (2.36) isgiven by

log Odds(c | x1:t, z1:t) =

log Odds(c | zt, xt)

− log Odds(c)

+ log Odds(c | x1:t−1, z1:t−1). (2.37)

Theusageof the log Odds notation hasadvantagethat it can be computed efficiently. It
isonly necessary to compute asum in order to update a cell based onsensory input. To
recover the occupancy probabilit y from the Odds representation given in Eq. (2.36),
weuse the following formulawhich can easily bederived from Eq. (2.35):

p(x) =
Odds(x)

1 + Odds(x)
(2.38)

This leads to the followingoccupancy update formula

p(c | x1:t, z1:t) =
[

1 +
(1 − p(c | xt, zt))

p(c | xt, zt)
·

p(c)

(1 − p(c))
·
1 − p(c | x1:t−1, z1:t−1)

p(c | x1:t−1, z1:t−1)

]
−1

. (2.39)

Eq. (2.39) tells ushow to updateour belief p(c | x1:t, z1:t) about theoccupancy proba-
bilit y of a grid cell given sensory input. In practice, one often assumes that the occu-
pancy prior is0.5 for all cells so that p(c)

(1−p(c))
can be removed from the equation.

It remains to describe how to compute the occupancy probabilit y p(c | xt, zt) of a
grid cell given a single observationzt and the corresponding posext of therobot. This
quantity strongly depends on the sensor of the robot and has to be defined manually
for each typeof sensor.

2.2 GRID MAPS 37

probabilit y

distancebetween sensor andcell under consideration

pfree

pocc

pprior

•

• •

•

zt,n − r

2

zt,n +
r

2

Occupancy probabilit y

Figure 2.3: Sensor model for a laser range finder. It depicts the probabilit y that a cell
isoccupied depending onthedistanceof that cell from the laser sensor.

2.2.2 Sensor Model for a Laser RangeFinder

In case alaser range finder is used, a quitesimplistic model can be applied. Each cell
c that is covered by then-th beam zt,n of theobservationzt and whosedistanceto the
sensor is shorter than the measured one, is supposed to be unoccupied. The cell i n
which thebeam ends is supposed to beoccupied. Thefunctiondist(xt, c) refers to the
distancebetween thesensor and the center of the cell c. Thiscan be formulated

p(c | zt,n, xt) =







pprior , zt,n isamaximum range reading
pprior , c isnot covered by zt,n

pocc , |zt,n − dist(xt, c)| < r
pfree , zt,n ≥ dist(xt, c),

(2.40)

where r is the resolution of the grid map. Furthermore, it must hold 0 ≤ pfree <
pprior < pocc ≤ 1. Figure 2.3 depicts an example for such a sensor model for laser
rangefinder data.

2.2.3 Sensor Model for a Sonar Sensor

In case asonar sensor is used, the sensor model is slightly more complicated, since
the sensor is not a beam sensor and the observations are more noisy than the ones of

38 CHAPTER 2: BASIC TECHNIQUES

probabilit y

distancebetween sensor andcell under consideration

zt,n − r

2

pfree

pocc

pprior •

•

• •

•

Occupancy probabilit y

Figure2.4: Probabilit y that a cell on theoptical axisof thesensor isoccupied depend-
ing onthedistanceof that cell from thesensor.

a laser range finder. In practice, one typically uses a mixture of three functions to
expressthe model. First, the influenceof an observation (which is represented by the
differencebetween pprior and pocc as well as between pprior and pfree) decreases with
themeasured distance.

Second, the proximity information of a sonar is substantially affected by noise.
Therefore, one typically uses a piecewise linear function to model a smooth transition
from pfree to pocc as ill ustrated in Figure2.4.

Finally, the sonar sensor should not be modeled as a beam sensor, since it sends
out a conic signal. The accuracy of an observation decreaseswith the angular distance
between the cell under consideration and the optical axis of the observation. This is
expressed by the derivation from the prior and is typically modeled using a Gaussian
with zero mean. Therefore, it i s maximal along the optical axis and decreases the
bigger the angular distanceform theoptical axis is.

Two examplesfor aresultingmodel aredepicted in Figure2.5. It showstwo three-
dimensional plots of the resulting occupancy probabiliti es for a measurement of 2m
(left image) and 2.5m (right image). In this figure, the optical axis of the sensor cone
was identical with thex-axis and thesensor was placed in theorigin of the coordinate
frame. As can be seen, the occupancy probabilit y is high for cells whose distanceto
xt is close to zt,n. It decreases for cells with shorter distancethan zt,n as well as with

2.2 GRID MAPS 39

Occupancy probability

0
0.5

1
1.5

2
2.5x -0.4

-0.2

0

0.2

0.4

y

0.3

0.4

0.5

0.6

0.7

Occupancy probability

0
0.5

1
1.5

2
2.5x -0.4

-0.2

0

0.2

0.4

y

0.3

0.4

0.5

0.6

0.7

Figure 2.5: Occupancy probabilit y introduced by a single ultrasoundmeasurement of
zt,n = 2.0m (left image) and zt,n = 2.5m (right image).

increasing valuesof the angular distance.
Figure 2.6 depicts the mapping process for a sequence of observations recorded

with an iRobot B21r robot. The first row shows a map was built from a sequenceof
previous ultrasoundscans. Afterwards the robot perceived a series of 18 ultrasound
scans each consisting of 24 measurements. The occupancy probabiliti es for these 18
scans are depicted in the rows from 2 to 7. The occupancy probabilit y grid obtained
by integrating the individual observations into themap is shown in the last row of this
figure. Ascan beseen, thebelief convergesto arepresentation of the corridor structure
in which thescans where recorded.

2.2.4 Reflection Probabili ty Mapping

Beside occupancy probabilit y grids, there exist alternative realization of grid maps. A
frequently used model istheso-called reflection probabilit y map or countingmodel. In
contrast to occupancy grid maps, they store for each cell a reflection probabilit y value.
This value provides the probabilit y that a measurement covering the cell i s reflected.
Note that theoccupancy model and the countingmodel aresimilar but not identical.

In thismodel, we are interested in computing themost likely reflection probabilit y
map m∗ given theobservationsand posesof the robot.

m∗ = argmax
m

p(m | x1:t, z1:t) (2.41)

By series of mathematical transformations (see[Burgard, 2005] for the details), one
can derive that the most likely map m∗ is the map for which each grid cell c has the

40 CHAPTER 2: BASIC TECHNIQUES

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

→

Figure 2.6: Incremental mapping in a corridor environment. The upper left image
shows the initial map and the lower one contains the resulting map. The maps in
between are the local mapsbuilt from the individual ultrasoundscansperceived by the
robot.

2.2 GRID MAPS 41

value

p(c | x1:t, z1:t) =
#hits(c, x1:t, z1:t)

#hits(c, x1:t, z1:t) + #misses(c, x1:t, z1:t)
, (2.42)

where #misses(c, x1:t, z1:t) is the number of times a beam zt,n taken from xt passed
throughthe grid cell c and #hits(c, x1:t, z1:t) is the number of times a beam ended in
that cell . Sincethevalueof each cell can bedetermined by counting, this technique is
also called countingmodel.

The differences between occupancy probabilit y and reflection probabilit y maps
is that the occupancy probabilit y typically converges to 0 or 1 for each cell which
is frequently observed. In contrast to that, reflection probabilit y values converge to
values between 0 and 1. Values significantly different from 0 or 1 often occur when
mapping objects much smaller than the grid discretization or, for example, for glass
panes which are repeatedly observed with a laser rangefinder.

