Chapter 2

Basic Tedhniques

his chapter explains two techniques which are frequently used throughou

thisthesis. First, we will i ntroducethe concept of particlefilters. A particle

filter isareaursive Bayesian technique for estimating the state of adynamic

system. We then explain the ideas of grid maps and “mapping with known
poses’. Note that elementary laws in the context of probability theory can be foundin
the Appendix A.1 of thisthesis.

2.1 Introduction to ParticleFilters

A particlefilter isanonparametric implementation d the Bayesfilter and is frequently
used to estimate the state of a dynamic system. The key ideaisto represent a posterior
by aset of hypaheses. Each hypahesisrepresents one potential state the system might
bein. The state hypaheses are represented by aset S of NV weighted random samples

S = {(hwy|i=1,....,N}, (2.1)

where sl is the state vedor of the i-th sample and w!! the crrespondngimportance
weight. The weight isanonzero value and the sum over all weightsis 1. The sample
set represents the distribution

N
plx) = sz'5s[i]($), (2.2)

where ;) isthe Diracfunctionin the state s!*! of thei-th sample. Such set S of samples
can be used to approximate abitrary distributions. The samples are drawn from the
distribution they shoud approximate. To ill ustrate such an approximation, Figure 2.1
depicts two distributions and their correspondng sample sets. In general, the more
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Figure 2.1: Two functions and their approximations by sampleswith unform weights.
The samples areiill ustrated by the verticd bars below the two functions.

samples that are used, the better the goproximation. The ability to model multi-modal
distributions by the set of samplesis an advantage compared to a series of other filters.
The Kaman filter [Kalman, 1960, for example, is restricted to Gaussan distributions.

Whenever we ae interested in estimating the state of a dynamic system over time,
we can use the particle filter algorithm. The ideaof this technique is to represent the
distributionat ead pant in time by a set of samples, also cdled particles. The particle
filter algorithm all ows us to reaursive estimate the particle set S; based onthe estimate
S;_1 of the previous time step. The sampling importance resampling (SIR) particle
filter can be summarized with the foll owing threesteps:

1. Sampling: Crede the next generation S; of particles based onthe previous st
S;_1 of samples. This dep isalso cdled sampling a drawing from the propcsal
distribution.

2. Importance Weighting: Compute an importanceweight for ead samplein the
set S;.

3. Resampling: Draw N samplesform the set S;. Thereby, the likelihoodto draw
a particle is propational to its weight. The new set S, is given by the drawn
particles.

In the foll owing, we explain these three steps in more detail . In the first step, we
draw samplesin order to oltain the next generation o particles for the next time step.
In general, the true probability distribution to sample particles from is not known or
naot in a suitable form for sampling. We show that it is possble to draw samples from
adifferent distribution than the one we want to approximate. Thistedniqueisknown
as importance sampling.
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We ae faced with the problem of computing the expedationthat = € A, where A
isaregion. In general, the expedation £,[f(x)] of afunction f is defined as

Elf() = / pla) - f(z) de. (2.3)

Let B be afunction which returns 1 if its argument is true and 0 dherwise. We can
expressthe expedationthat x € A by

E[Bx e A)] — / p(x)- Bz € A)dz (2.4)
- /% -7(z) - B(z € A)dx, (2.5)

where 7 isadistributionfor which we require that
p(z) >0 = m(z)>0. (2.6)
Thus, we can define aweight w(z) as
wiz) = 2 (27)
Thisweight w is used to acourt for the diff erences between p andthe 7. Thisleadsto

E,B(x € A)] = /ﬂ'(l’) ~w(z) - B(x € A)dx (2.8)
= E;w(z) - B(z € A). (2.9

Let us consider again the sample-based representations and suppase the sample ae
drawn from 7. By courting all the particlesthat fall i nto the region A, we can compute
the integral of m over A by the sum over samples

N
/Aﬁ(x) dr =~ % : ;B(Sm €A). (2.10

If we consider the weightsin this computation, we can compute the integral over p as

N
/p(x) dr ~ > wll-B(sf e A). (2.11)
A i=1
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Figure 2.2: The goal isto approximate the target distribution by samples. The samples
are drawn from the propacsal distribution and weighted acording to Eq. (2.13). After
weighting, the resulting sample set is an approximation o the target distribution.

It can be shown, that the quality of the goproximationimproves the more samples that
are used. For an infinite set of samples, the sum over the samples converges to the
integral

N

lim Zw[i] -B(sl e A) = /Ap(x) dzx. (2.12

N=oo =1
Let p be the probability distributionwhichisnat in a suitable form for samplingand =
the onewe acually sample from. In the context of importance sampling, p istypicdly
cdled the target distribution and = the proposal distribution.

This derivation tell s us that we can sample from an arbitrary distribution 7 which
fulfills Eq. (2.6) to approximate the distribution p by assgning an importance weight
to eat sample acordingto Eg. (2.7). This condtionis nealed to ensure that a state
which might be sampled from p does nat have zeo probability under 7. An exam-
ple that depicts a weighted set of samples in case the propasal is different from the
target distribution is shown in Figure 2.2. Note that the importance sampling prin-
ciple requires that we can pant-wise evaluate the target distribution. Otherwise, the
computation o the weightswould be impossble.

Let p(s1+ | d) be the posterior to estimate, where d stands for all the data or
badgroundinformation. Theimportanceweighting performed in Step 2 o the particle
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filter implementation (seePage 28) acourts for the fad one draws from the propasal
7 by setting the weight of ead particleto
[4]

: Ld
wll = nm(sul ) (2.13)

(st | d)

where n isthe normali zer that ensures that the sum over all weightsis 1.

The resampling step within a particle filter removes particles with a low impor-
tanceweight and replaces them by particles with a high weight. After resampling, the
weights are set to 1 /N becaise by drawing acarding to the importance weight, one
replaces “likelihoods” by “frequencies’.

Resamplingis needed sincewe use only afinite number of samplesto approximate
the target distribution. Withou resampling, typicaly most particles would represent
states with a low likelihood after some time and the filter would loose tradk of the
“good hypaheses. On the one hand, this fad makes resampling important, on the
other hand removing samples from the filter can also be problematic. In pradice, it
can happen that samples are replaced even if they are dose to the mrred state. This
can leal to the so-cdled particle depletion o particle deprivation problem [Doucet,
1998 Douce et al., 2001, van der Merwe et al., 2004.

To reduce the risk of particle depletion, one can apply low-variance resampling.
This technique does not draw the particles independently of ead other in the resam-
plingstep. Instead of generating N randam numbersto seled NV samples, the gpproach
uses only a single randam number to choose the first particle. The others are drawn
depended on the first draw but still with a probability propartional to the individual
weights. As aresult, the particle set does not change during a resampling in case the
weights are uniformly distributed. A detail ed explanation onlow-variance resampling
aswell ason particlefiltersin general can be foundin [Thrunet al., 2005. The com-
plete particle filter algorithm islisted in Algorithm 2.1.

2.1.1 Mobile Robot L ocalization using Particle Filters

In the context of mobile robdics, particle filters are often used to tradk the position
of the roba. Sincethistedcnique is used in this thesis, we briefly ill ustrate the most
important fads of Monte-Carlo locdization [Dellaat et al., 1999. In this senario,
the state vedor s is the pose of the vehicle. Mostly, the motion estimate of the roba
resulting from odametry is used to compute the propasal distributionin Step 1. The so-
cdled motionmode p(z; | x;_1,u,_1) iSused to draw the next generation d particles.
In this case, the importanceweight wtm of the i-th sample hasto be computed based on
the observationlikelihoodp(z; | m, x?) of the most recent sensor observation z; given
amap m of the environment and the correspondng pase of the particle. This beames
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Algorithm 2.1 The particle filter algorithm
Input: Sample set S;_; andthe datad.
1S, =0
. for i=1toN do
draw § ~ (s | sﬂl, d)

2
3
. . -1
4 w=n- [p(§ | sﬂl,d)] : [w(é | sﬂl,d)] Il where n isanormali zer
5 S, =5+ (50)
6. end
7.5, =0
8: for j=1toN do
9. draw asample sl from S.. Thereby, s is drawn with probability w|”
100 S, =8+ <s¥1, 1 /N>
11 end
12 return S;

clea by considering the following derivations. We can transform the full posterior
p(z1.¢ | m, 214, u14—1) @nd oltain areaursive formula

Bayes' rule
p(xlzt | m, let,ulzt—l) = n 'p(zt | m, xl:tazlzt—laulzt—l)
'p(xlzt | m, Zl:t—laulzt—l) (2-14)
Markov
= n-p(z | m, )
'p(xlzt | m, Zl:t—laulzt—l) (2-15)
product rule
= n-p(z | m, )
‘p(% | M, T1:4—1, Zl:t—laulzt—l)
'p(xlzt—l ‘ m, Zl:t—17U1;t—1) (2-16)

Mark
= n 'p(zt | m, xt) 'p(It | It—l,ut—l)

'p(Ilzt—1 | m,zy.t—1, U1;t—2)7 (2-17)

where 7 is the normali zer resulting from Bayes' rule. Under the Markov assumption,
we can transform the propacsal as

7T($1:t | m, Zl:taulzt) = 7T($t | m, SUt—l,Zt,Ut—l)

'7T(931:t—1 | m, z1.4—1, Ul:t—2)- (2-18)

The computation o theweights needsto bedore acordingto Eq. (2.13). Inthe sequel,
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we drop the normali zer that ensures that all weights sum upto 1. Thisleadsto

w, — p(xm ‘ m, Z1;t,U1:t—1) (2.19)

7T($1:t | m, z1:t, U1;t—1)

Ui 'p(zt | m,l“t) 'p(xt | xt—laut—l)
7T(931:t | m, Zl:t,ulzt—l)

n 'p(zt | m,l“t) 'p(xt | xt—laut—l) p(xlzt—l | m, Zl:t—laulzt—2)

'p(«rlzt—l ‘ m, Zl:t—17u1:t—2) (2-20)

= : (2.21)
(@ | M, ey, 2, W) (101 | M, 21021, Ur—2)
we 1
_n 'p(Zt | muxt) ~p(xt ‘ xt—hut—l) Wy (2.22)
ﬂ-(xt | m, xt—lvztvut—l)
If we choose the motion model as the propasal, we obtain for the -the sample
, . [y (4] ‘
wt[l] _ n p(Zt ‘ m, Ty ) Ml)(xt | xt—l? ut—l) . wgﬂl (2.23)
p(e | 22y, uer)
= n-pla | mz) w)! (2.29)
o< pla | mafl) wil,. (2.25

Since the resampling step resets the weights of the whole set by 1/N, we cax ignae
the weight of the previous time step and oldain

w o plz | m, 2. (2.26)
This derivation shows that by chocsing the motion model to draw the next generation
of particles, we have to use the observation likelihoodp(z; | m,z;) to compute the
individual weights.

To summarize this fdion, particle filters are a nonparametric implementations
of the reaursive Bayes filter. They use aset of weighted samples and can represent
arbitrary distributions. The samples are drawn from a propcsal distribution. After de-
terminingtheimportanceweights which acourt for the fad that the target distribution
is different from the propasal distribution, the resampling step replaces particles with
alow weight by particles with ahighimportanceweight.

Throughou thisthesis, we gply particle filters to solve the simultaneous locdi za
tionand mapping problem. Furthermore, we gply them in the context of information
gain-based exploration and to locdize amobile roba in dyrnamicaly changing envi-
ronments.
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2.2 Grid Maps

There exist different types of models for representing the environment which are fre-
guently used in mobil e robaics. The most common ores are feaure maps, geometric
maps, and gid maps. A feaure map stores a set of feaures deteded in the envi-
ronment. Typicd fedures are lines and corners when proximity sensors are used.
Other posghiliti es are visual feaures based onthe scde invariant feaure transform
(SIFT) [Lowe, 1999 whenever a canera is used to perceive the environment. For
ead fedure, these maps gore the feaure information together with a mordinate and
eventualy an uncertainty measure. Thiscan beredized byalist of feauresor by using
more dficient data structures like KD-trees [Friedman et al., 1977, Bentley, 1984.

Geometric maps represent all obstades deteded by the roba as geometric objeds,
like drcles or palygors. Thiskind o representationis comparably compad and neels
only few memory resources.

Throughot this thesis, we use grid maps to model the environment. Grid maps
discretizethe environment into so-cdled grid cdls. Each cdl storesinformation about
the aeait covers. Most frequently used are occupancy grid maps that store for eath
cdl asingle value representing the probabilit y that thiscdl i soccupied by an obstade.
The alvantage of grids is that they do nd rely on predefined feaures which need
to be extraded from sensor data. Furthermore, they offer a constant time accesto
grid cdls and provide the aility to model unknavn (unolserved) aress, which is an
important feaure in the context of exploration. However, they have the disadvantages
of discretizationerrors and o requiring alot of memory resources.

In this dion, wefirst introducethe occupancy mapping algorithm, developed by
Moravec and Elfes [1985. Afterwards, we briefly describe avariant cdled reflec
tion probability maps. Both approaches are dso referred to as “mapping with known
poses.”

2.2.1 Occupancy Probability Mapping

Grid maps discretize the environment into equally sized cdls. Ead cdl represents
the aeaof the environment it covers. It is assuumed that ead cdl is either free or
occupied by an obstade. Occupancy grids dore for eat cdl ¢ a probability p(c)
of being accupied by an obstade. In the following, we will derive the map updite
algorithmintroduced by Moravec and Elfes which computes the occupancy probability
p(m) for the grid map m.

The dgorithm takesinto acamun a sequenceof sensor observations z;.; obtained by
the roba at the positions x,.; and seeks to maximizethe occupancy probability for the
grid map. One asumptionin the dgorithm of Moravec and Elfesis that the diff erent
cdls are independent. Therefore, the probability of a map m is given by the product
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over the probabiliti es of theindividual cdls

pm) = J]r() (2.27)

cem

In the foll owing, we concentrate onthe estimation o the occupancy probability of the
individual cdls c € m. By applying Bayes rule using x.; and z;.,_; as badkground
knowledge, we obtain

p(zt | C, T1:t, Zl:t—l) -p(c ‘ $1:t721:t—1)
p(zt ‘ L1, Zl:t—l) .

(2.29)

p(C | L1:ty Zl:t)

We ssaumethat z; isindependent from z.;_; and z;.;_;. Thislealsto

plc| o my) = PELCT) Pl T B1um) (2.29)
p(zt | T1as 210-1)

We gply Bayes rulefor theterm p(z; | ¢, z;) in Eq. (2.29) and oltain

p(zt | c, xt) _ p(C | l’t,Zt) 'p<Zt ‘ xt). (230)

ple| )

We can nov combine Eg. (2.30) and Eqg. (2.29). Let us furthermore assume that x;
does not cary any informationabou c if there isno observation z;. Thisleadsto

p(c ‘ T, Zt) ‘p(zt | xt) ~p(c | T1:t—1, Zl;t—l)
p(c) ‘p(Zt ‘ HATN Zl;t—l) .

(2.31)

p(C | L1ty Zl:t)

If we exploit the fad that ead cdl is abinary variable, we can derive the foll owing
equationin an analogous way

p(—|c | Ty, Zt) 'p(zt | xt) -p(—|c | T1:4-1, Zl:t—l)

—c | T, 21, 2.32
p( C | L1ty 21 t) p(_\C) p(zt | x1:t721:t_1) ( )
By dividing Eq. (2.31) by Eq. (2.32), we obtain
ple |z, 210)  ple|x, 2) - p(=e) - ple | 211, 21:0-1)
— (2.33)
p(=c | i, 21:) p(=c | @, 2) - ple) - p(—e | 211, 21:-1)
Finally, we use the fad that p(—c¢) = 1 — p(c) which yields
p(C | L1:ty Zl:t) _
1 —p(C ‘ xl:thlzt)
plelanz)  1—ple)  ple] T, 210-1) (234)

11— P(C | Ty, Zt) p(c) 1- P(C | T1it—1, Zl:t—l).
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If we define

Odds(z) = -2 (z) (2.35)

Eq. (2.34) turnsinto

Odds(c | 214, 21:¢) =
Odds(c | 24, z) - Odds(c) ™" - Odds(c | T14-1, 21:4-1). (2.36)

This equation hes a reaursive structure similar to that of a reaursive Bayesian updite
scheme. The arrespondng log Odds representation o Eq. (2.36) isgiven by

log Odds(c | 214, 21.4) =
log Odds(c | 2, z¢)
—log Odds(c)
+log Odds(c | x1.4-1, 21:4-1)- (2.37)

The usage of thelog Odds notation hes advantagethat it can be computed efficiently. It
isonly necessary to compute asum in order to update a cdl based onsensory inpu. To
reaver the occupancy probability from the Odds representation gven in Eq. (2.36),
we use the foll owing formula which can easily be derived from Eq. (2.35):

Odds(x)
P*) = T 0das() (238)
This leads to the foll owing occupancy update formula
p(C | L1:ty Zl:t) =
14 (I=plclz,z)  ple)  1=plc| @1, 214-1) _1. (2.39)

plc |z, 2) (1—-p(c)) plc| Tre—1, 21:4-1)

Eq. (2.39) tellsus how to update our belief p(c | x4, 21.,) abou the occupancy proba-
bility of agrid cdl given sensory inpu. In pradice, one often assumes that the occu-
pancy prior is 0.5 for all cels o that (1525()0)) can be removed from the eguation.

It remains to describe how to compute the occupancy probability p(c | zy, z;) of a
grid cdl given asingle observation z; and the arrespondng pcse z; of theroba. This
quantity strondy depends on the sensor of the roba and has to be defined manually

for ead type of sensor.
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Figure 2.3: Sensor model for alaser range finder. It depicts the probability that a cdl
isoccupied depending onthe distance of that cdl from the laser sensor.

2.2.2 Sensor Mode for aLaser Range Finder

In case alaser range finder is used, a quite simplistic model can be gplied. Ead cdl
c that is covered by the n-th beam 2, ,, of the observation z, and whaose distanceto the
sensor is shorter than the measured ore, is uppased to be uncccupied. The cdl in
which the beam endsis uppased to be occupied. Thefunction dist(x,, ¢) refersto the
distance between the sensor and the center of the cdl ¢. Thiscan be formulated

Dprior 2, IS@maximum range reading
B Dprior cisnot covered by z; ,, 240
plel znme) = Doce |2em — dist(ze, )] <7 (2.40)
pfreea Zt,n 2 diSt(xta C)a

where r is the resolution o the grid map. Furthermore, it must hold 0 < pp.. <
Pprior < Pocc < 1. Figure 2.3 depicts an example for such a sensor mode! for laser
range finder data.

2.2.3 Sensor Mode for a Sonar Sensor

In case asonar sensor is used, the sensor modd is dightly more complicated, since
the sensor is not a bean sensor and the observations are more noisy than the ones of
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Figure 2.4: Probability that a cdl onthe optica axis of the sensor isoccupied depend-
ing onthe distance of that cdl from the sensor.

a laser range finder. In pradice one typicdly uses a mixture of threefunctions to
expressthe model. First, the influence of an observation (which is represented by the
difference between p,,.,, and p,.. as well as between p,,.,, and py...) deaeases with
the measured distance

Sewond, the proximity information of a sonar is substantialy affeded by ndse.
Therefore, one typicdly uses a piecavise linea functionto model a smoath transition
from pj. 10 p,.. asill ustrated in Figure 2.4.

Finally, the sonar sensor shoud na be modeled as a beam sensor, since it sends
out a awnic signal. The acwracgy of an observation deaeases with the anguar distance
between the cdl under consideration and the opticd axis of the observation. Thisis
expressed by the derivation from the prior andis typicdly modeled using a Gaussan
with zero mean. Therefore, it is maximal along the opticd axis and deaeases the
bigger the enguar distanceform the opticd axisis.

Two examplesfor aresulting model are depicted in Figure 2.5. It showstwo three
dimensional plots of the resulting accupancy probabiliti es for a measurement of 2m
(left image) and 25m (right image). In thisfigure, the optica axis of the sensor cone
was identicd with the x-axis and the sensor was placel in the origin of the coordinate
frame. As can be see, the occupancy probability is high for cdls whaose distance to
x; iscloseto z,. It deaeases for celswith shorter distancethan z,,, as well as with
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Figure 2.5: Occupancy probability introduced by a single ultrasoundmeasurement of
2t = 2.0m (leftimage) and z; ,, = 2.5m (right image).

increasing values of the enguar distance

Figure 2.6 depicts the mapping processfor a sequence of observations recorded
with an iRoba B21r roba. The first row shows a map was built from a sequence of
previous ultrasound scans. Afterwards the roba perceved a series of 18 utrasound
scans ead consisting o 24 measurements. The occupancy probabiliti es for these 18
scans are depicted in the rows from 2 to 7. The occupancy probability grid oktained
by integrating the individual observations into the map is shown in the last row of this
figure. Ascan be seen, the beli ef convergesto arepresentation o the corridor structure
in which the scans where recorded.

2.2.4 Refledion Probability Mapping

Beside occupancy probability grids, there exist aternative redizaion o grid maps. A
frequently used model i sthe so-cdl ed refledion probabilit y map or courtingmodel. In
contrast to occupancy grid maps, they store for ead cdl arefledion probability value.
This value provides the probability that a measurement covering the cdl i s refleded.
Note that the occupancy model and the courting model are similar but not identicd.

In thismodel, we ae interested in computing the most likely refledion probability
map m* given the observations and pases of the robd.

*

m* = argmaxp(m | T, 214) (2.41)

By series of mathematicd transformations (see[Burgard, 2005 for the detail s), one
can derive that the most likely map m* is the map for which ead grid cdl ¢ has the
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Figure 2.6: Incremental mapping in a corridor environment. The upper left image
shows the initial map and the lower one mntains the resulting map. The maps in
between are the loca maps built from the individual ultrasoundscans perceived by the
roba.
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value

#hits(c, L1:t, Zl:t)
#hits(c, x1.4, 21.4) + #misses(c, T1.4, 21:4)

p(c | 1, 21:4) , (2.42)

where #misses(c, x1.4, 21.¢) 1S the number of times a beam 2, ,, taken from z; passed
throughthe grid cdl ¢ and #hits(c, x1.¢, z1+) 1S the number of times abeam ended in
that cdl. Sincethe value of eat cdl can be determined by courting, thistechniqueis
also cdled courting model.

The differences between occupancy probability and refledion probability maps
is that the occupancy probability typicdly converges to O a 1 for ead cdl which
is frequently observed. In contrast to that, refledion probability values converge to
values between 0 and 1 Vaues sgnificantly different from O or 1 often occur when
mapping ojeds much smaller than the grid discretization ar, for example, for glass
panes which are repeaedly observed with alaser range finder.



