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Probabilistic Robotics

Key idea:

Explicit representation of uncertainty
(using the calculus of probability theory)

= Perception = state estimation
= Action = utility optimization



Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.

" 0=Pr(4) =1
= Pr(True) =1 Pr(False) =0

= Pr(Av B)=Pr(A4)+Pr(B)-Pr(AAB)



A Closer Look at Axiom 3

Pr(Av B) =Pr(A4)+Pr(B)-Pr(A A B)

True
4 AANB B




Using the Axioms

Pr(Av =A) = Pr(A4)+Pr(—=A)-Pr(AA —A)
Pr(7rue) = Pr(A)+Pr(—=A)-Pr(False)
1 = Pr(A)+ Pr(=A4)-0
Pr(—A) = 1—Pr(A)



Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
iN {Xy, X5, «oey Xt

= P(X=x;) or P(x;) is the probability that the
random variable X takes on value x;

= P(-) is called probability mass function

" E.g.  P(Room)=(0.7,0.2,0.08,0.02)



Continuous Random Variables

= X takes on values in the continuum.
= p(X=x) or p(x) is a probability density

function

= E.qQ.

Pr(xE(a,b)) = f p(x)dx

p(x) |

TN




“Probability Sums up to One”

Discrete case Continuous case

EP(x)=1 fp(x)dx=1



Joint and Conditional Probability
= P(X=x and Y=y) = P(x,y)

= If X and Y are independent then
P(x,y) = P(x) P(y)

= P(x | y) is the probability of x given y
P(x |y) = P(xy)/ P(y)
P(x,y) = P(x|y)P(y)

= If X and Y are independent then
P(x | y) = P(x)




Law of Total Probability

Discrete case Continuous case

P(x)=Y P(x| »)P(y)  p(x)=[p(x|»)p(y) dy
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Marginalization

Discrete case

P(x) =" P(x,)

Continuous case

p(x) = [p(x,y) dy
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Bayes Formula

P(x,y)=P(x| y)P(y)=P(y|x)P(x)

=

P(y|x) P(x) likelihood-prior

P(x|y) =

P(y) evidence




Normalization

P(y|x) P(x) _
Py P(y|x)P(x)

1 1
= P =
1= TSGR

P(x|y) =

Algorithm:
Vx:aux,, = P(y|x) P(x)

1

"7 Saux,,

X

Vx:P(x|y)=naux,,
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Bayes Rule
with Background Knowledge

P(y|x,z) P(x|z)

P =0 5
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Conditional Independence
P(x,y|z)=P(x|2)P(y|z)
= Equivalent to P(x‘z)=P(x\z,y)
and P(y|z)=P(y|z,x)

= But this does not necessarily mean

P(x,y)=P(x)P(y)

(independence/marginal independence)
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Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open|z)?

-
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Causal vs. Diagnostic Reasoning
= P(open|z) is diagnostic

= P(z|open) is causal
= Often causa wledge is easier to

obtain count frequencies!

= Bayes rule allows us to use& causal
knowledge:

P(z|open)P(open)
P(z)

P(open | z) =
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Example

" P(zlopen) = 0.6 P(z|-open) = 0.3
" P(open) = P(-open) = 0.5

P(z|open)P(open)
P(z|open)p(open) + P(z| ~open) p(~open)
0.6-0.5 03
0.6:0.5+0.3:0.5 0.3+0.15

P(open|z) =

=0.67

P(open|z) =

= 7 raises the probability that the door is open
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Combining Evidence

= Suppose our robot obtains another
observation z,

= How can we integrate this new information?

= More generally, how can we estimate
P(x|z,..z,)?
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Recursive Bayesian Updating

P(zn|x,z1,...,20-1) P(x| 21,...,20 -1)

P(x Zlyeiigzn) =
( | ) P(Zn|Zl,...,Zn—l)

Markov assumption:
z, is independent of z,,...,z,_; if we know x

P(Zn|.X) P(X|Zl,...,Zn—1)
P(Zn|Zl,...,Zn—1)
=1 P(zn|x) P(x|z1,...,2n-1)

=1, | | P(zi]%) P(x)

i=l...n

P(X|Zl,...,Zn) =
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Example: Second Measurement

" P(z,lopen) = 0.5 P(z,|—~open) = 0.6
= P(open|z,)=2/3

P(z, |open) P(open|z,)

P(open | 22921) =
P(z, |open) P(open| z,)+ P(z, | ~open) P(—open| z,)
1 2 1 1

_ 3 _ 3
1 1.1 38
3 3 5 15

= (0.625

o0 | i

3
12 3
IR } +_o
235

* Z, lowers the probability that the door is open
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A Typical Pitfall

= Two possible locations x; and X,
= P(x,)=0.99
= P(z|x,)=0.09 P(z|x,)=0.07

09
0.8 [
0.7
0.6 [

p(x|d)

05
04
03
02

0.1 [

1 1 1 1 1 1 )
5 10 15 20 25 30 35 40 45 5
Number of integrations



Actions

= Often the world is dynamic since
= actions carried out by the robot,
= actions carried out by other agents,
= or just the time passing by
change the world

= How can we incorporate such actions?
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Typical Actions

= The robot turns its wheels to move

= The robot uses its manipulator to grasp
an object

= Plants grow over time...

= Actions are never carried out with
absolute certainty

= In contrast to measurements, actions
generally increase the uncertainty
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Modeling Actions

= To incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x|u,x’)

= This term specifies the pdf that
executing u changes the state
from x’ to x.
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Example: Closing the door

-

26



State Transitions

P(x|u,x’) for u = “close door”:

(09
0.1 fopQ closed 1
0 G

If the door is open, the action “close door”
succeeds in 90% of all cases
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Integrating the Outcome of Actions

Continuous case:

P(x|u) = f P(x|u,x")P(x")dx'

Discrete case:

P(x|u) = EP(x lu, x")P(x")
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Example: The Resulting Belief
P(closed |u) = EP(closed |u, x")P(x')
= P(closed |u,open)P(open)
+ P(closed |u,closed)P(closed)
9 5 1 3 15

= % =

10 8 1 8 16
P(open|u) = E P(open |u,x")P(x'")
= P(open | u,open)P(open)

+ P(open |u,closed))P(closed)
1 5 0 3 1

= %k — % — = —

10 8 1 8 16
=1- P(closed | u)
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Bayes Filters: Framework

= Given:
= Stream of observations z and action data u:

d ={u,z ...,u,z,
= Sensor model P(z|x)
= Action model P(x|u,x’)
= Prior probability of the system state P(x)

= Wanted:
= Estimate of the state X of a dynamical system

= The posterior of the state is also called Belief:

Bel(x,)=P(x, |u,,z, ...,u,,z,
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Markov Assumption

p(z, 1 xy,20,,u,) = p(z,1x,)

p(x, I x,_,z,.u,) = p(x, lx,_,u,)

Underlying Assumptions

= Static world

= Independent noise

= Perfect model, no approximation errors
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Z = observation
= action

Bayes Filters X - state

Bel(xt) = P('xt |u19Z1 --wutazt)

Bayes =1 P(z, | x,,u,z,....u,) P(x, lu,z,...,u,)

Markov =1 P(z, | x,) P(x, lu,z,...,u,)

rotatprob. =1 P(z,1%,) [ P(x, 112,01, X, )
P(x_ lu,z,...,u)dx,_,

Markov =N P(Zt Ixt)fP(xt |l/tt,Xt_1)P(Xt_1 |M1,Zl,...,l/tt)dxt_1

Markov =17P(Zt Ixt)fP(xt |l/tt,xt_1)P(Xt_1 |M1,Zl,...,Zt_1)dXt_1

=1 P(z, 1 x,) f P(x, lu,x,_, ) Bel(x,_)dx,_
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Bel(x,)=n P(z, 1 x,) f P(x, lu,x_) Bel(x,_)dx,_

Algorithm Bayes_ filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z | x)Bel(x)
1 =1+ Bel'(x)
For all x do
Bel'(x) =1~ Bel'(x)

Else if d is an action data item u then
10. For all x do
11. Bel'(x) =fP(x |u,x") Bel(x') dx'

12. Return Bel’(x)

O ONO U AW
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Bayes Filters are Familiar!

Bel(x,)=n P(z,1x,) [ P(x, |u,x,) Bel(x, ) dx,_,

= Kalman filters

= Particle filters

= Hidden Markov models

= Dynamic Bayesian networks

= Partially Observable Markov Decision
Processes (POMDPs)
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Summary

= Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

= Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

= Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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