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Robot Motion 

§  Robot motion is inherently uncertain. 
§  How can we model this uncertainty? 
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Dynamic Bayesian Network for 
Controls, States, and Sensations 
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Probabilistic Motion Models 
§  To implement the Bayes Filter, we need the 

transition model   

§  The term                        specifies a posterior 
probability, that action u carries the robot 
from xt-1 to xt. 

§  In this section we will specify, how  
                can be modeled based on the 
motion equations. 
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Coordinate Systems 
§  The configuration of a typical wheeled robot in 

3D can be described by six parameters. 

§  Three-dimensional Cartesian coordinates plus 
three Euler angles roll, pitch, and yaw. 

§  Throughout this section, we consider robots 
operating on a planar surface. 

§  The state space of such 
systems is three-
dimensional (x,y,θ). 
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Typical Motion Models 

§  In practice, one often finds two types of 
motion models: 
§  Odometry-based 
§  Velocity-based (dead reckoning) 

§  Odometry-based models are used when 
systems are equipped with wheel encoders. 

§  Velocity-based models have to be applied 
when no wheel encoders are given.  

§  They calculate the new pose based on the 
velocities and the time elapsed. 
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Example Wheel Encoders 
These modules  provide 
+5V output when they 
"see" white, and a 0V 
output when they "see" 
black.  

These disks are 
manufactured out of high 
quality laminated color 
plastic to offer a very crisp 
black to white transition. 
This enables a wheel 
encoder sensor to easily 
see the transitions.  

Source: http://www.active-robots.com/ 
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Dead Reckoning 

§  Derived from “deduced reckoning.” 
§  Mathematical procedure for determining the 

present location of a vehicle. 
§  Achieved by calculating the current pose of 

the vehicle based on its velocities and the 
time elapsed. 

§  Historically used to log the position of ships. 

[Image source:  
Wikipedia, LoKiLeCh] 



9 

Reasons for Motion Errors 

bump 

ideal case different wheel 
diameters 

carpet 
and many more … 



Odometry Model 
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The atan2 Function 
§  Extends the inverse tangent and correctly 

copes with the signs of x and y. 



Noise Model for Odometry 
§  The measured motion is given by the true 

motion corrupted with noise. 
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Typical Distributions for 
Probabilistic Motion Models 
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Calculating the Probability 
Density (zero-centered) 

§  For a normal distribution 

§  For a triangular distribution 

1.  Algorithm prob_normal_distribution(a,b): 
  

2.  return   

1.  Algorithm prob_triangular_distribution(a,b): 
  

2.  return   

query point 

std. deviation 
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Calculating the Posterior  
Given x, x’, and Odometry 
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1.  Algorithm motion_model_odometry(x, x’,u) 
2.    

3.    

4.    
5.    

6.    
7.    

8.    

9.    
10.    

11.  return  p1 · p2 · p3 

 odometry params (u) 

   values of interest (x,x’) 

odometry  



Application 
§  Repeated application of the sensor model 

for short movements. 
§  Typical banana-shaped distributions 

obtained for the 2d-projection of the 3d 
posterior. 

x 
u 

p(x’|u,x) 

u 

x 



Sample-Based Density Representation  
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Sample-Based Density Representation  
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How to Sample from Normal  
Distributions? 

§  Sampling from a normal distribution 

 

1.  Algorithm sample_normal_distribution(b): 
  

2.  return   
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Normally Distributed Samples 

106 samples 
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How to Sample from Normal or 
Triangular Distributions? 

§  Sampling from a normal distribution 

§  Sampling from a triangular distribution 

1.  Algorithm sample_normal_distribution(b): 
  

2.  return   

1.  Algorithm sample_triangular_distribution(b): 
  

2.  return   
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For Triangular Distribution 

103 samples 104 samples 

106 samples 105 samples 



How to Obtain Sample from 
Arbitrary Functions? 
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Rejection Sampling 
§  Sampling from arbitrary distributions 
§  Sample x from a uniform distribution from [-b,b] 
§  Sample c from [0, max f] 
§  if f(x) > c   keep the sample 

otherwise  reject the sample  

24 
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Rejection Sampling 

§  Sampling from arbitrary distributions 

1.  Algorithm sample_distribution(f,b):  
2.  repeat 

3.     

4.    
5.  until  (                ) 

6.  return 
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Example 
§  Sampling from  



Sample Odometry Motion Model 
1.  Algorithm sample_motion_model(u, x): 
         

1.   	


2.    
3.    

 
4.    
5.    

6.    
  

7.  Return   
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Examples (Odometry-Based) 



Sampling from Our Motion 
Model 

Start 
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Velocity-Based Model 

θ-90 



Noise Model for the Velocity-
Based Model 
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§  The measured motion is given by the true 
motion corrupted with noise. 

§  Question: What is the disadvantage of this 
noise model? 

v̂ = v+εα1 |v|+α2 |ω|
ω̂ =ω +εα3 |v|+α4 |ω|



Noise Model for the Velocity-
Based Model 
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§  The circle constrains the final orientation 
§  2D manifold in a 3D space 
§  Better approach: 

v̂ = v+εα1 |v|+α2 |ω|

γ̂ = εα5 |v|+α6 |ω|

ω̂ =ω +εα3 |v|+α4 |ω|

Term to account for the final rotation 



Motion Including 3rd Parameter 
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Term to account for the final rotation 
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Equation for the Velocity Model 

Center of circle: 

some constant 
(center of circle is orthogonal  
to the initial heading) 
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Equation for the Velocity Model 

Center of circle: 

some constant 

some constant (circle’s center lies on a 
ray half way between x and x’ and is 
orthogonal to the line between x and x’) 
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Equation for the Velocity Model 

Center of circle: 

some constant 

Allows us to solve the equations to: 
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Equation for the Velocity Model 

and 



Equation for the Velocity Model 
§  The parameters of the circle: 

 
 

§  allow for computing the velocities as 

38 
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Posterior Probability for 
Velocity Model 
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Sampling from Velocity Model 



Examples (Velocity-Based) 



Map-Consistent Motion Model 

p(x ' | u, x) p(x ' | u, x,m)≠ 

p(x ' | u, x,m) =η p(x ' |m) p(x ' | u, x)Approximation: 
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Summary 
§  We discussed motion models for odometry-based 

and velocity-based systems 
§  We discussed ways to calculate the posterior 

probability p(x’| x, u). 
§  We also described how to sample from p(x’| x, u). 
§  Typically the calculations are done in fixed time 

intervals Δt. 
§  In practice, the parameters of the models have to 

be learned. 
§  We also discussed an extended motion model that 

takes the map into account.  


