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Sensors for Mobile Robots 
§  Contact sensors: Bumpers 
§  Internal sensors 

§  Accelerometers (spring-mounted masses) 
§  Gyroscopes (spinning mass, laser light) 
§  Compasses, inclinometers (earth magnetic field, gravity) 

§  Proximity sensors 
§  Sonar (time of flight) 
§  Radar (phase and frequency) 
§  Laser range-finders (triangulation, tof, phase) 
§  Infrared (intensity) 

§  Visual sensors: Cameras 

§  Satellite-based sensors: GPS 
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Proximity Sensors 

§  The central task is to determine P(z|x), i.e., the 
probability of a measurement z given that the robot 
is at position x. 

§  Question: Where do the probabilities come from? 
§  Approach: Let’s try to explain a measurement. 
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Beam-based Sensor Model 
§  Scan z consists of K measurements. 

§  Individual measurements are independent 
given the robot position. 
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Beam-based Sensor Model 
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Typical Measurement Errors of 
an Range Measurements 

1.  Beams reflected by 
obstacles 

2.  Beams reflected by 
persons / caused 
by crosstalk 

3.  Random 
measurements 

4.  Maximum range 
measurements 
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Proximity Measurement 
§  Measurement can be caused by … 

§  a known obstacle. 
§  cross-talk. 
§  an unexpected obstacle (people, furniture, …). 
§  missing all obstacles (total reflection, glass, …). 

§  Noise is due to uncertainty … 
§  in measuring distance to known obstacle. 
§  in position of known obstacles. 
§  in position of additional obstacles. 
§  whether obstacle is missed. 
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Beam-based Proximity Model 
Measurement noise 
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Beam-based Proximity Model 
Random measurement Max range 
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Resulting Mixture Density 
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How can we determine the model parameters? 
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Raw Sensor Data 
Measured distances for expected distance of 300 cm.  

Sonar Laser 
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Approximation 
§  Maximize log likelihood of the data 

 
§  Search space of n-1 parameters. 

§  Hill climbing 
§  Gradient descent 
§  Genetic algorithms 
§  … 

§  Deterministically compute the n-th 
parameter to satisfy normalization 
constraint. 
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Approximation Results 

Sonar 

Laser 

300cm 400cm 
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Example 

z P(z|x,m) 
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Discrete Model of Proximity Sensors  

§  Instead of densities, consider discrete steps along 
the sensor beam. 

§  Consider dependencies between different cases. 

Laser sensor Sonar sensor 
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Approximation Results 

Laser 

Sonar 
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"sonar-0"
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"sonar-1"
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"sonar-2"
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"sonar-3"
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Summary Beam-based Model 
§  Assumes independence between beams. 

§  Justification? 
§  Overconfident! 

§  Models physical causes for measurements. 
§  Mixture of densities for these causes. 
§  Assumes independence between causes. Problem? 

§  Implementation 
§  Learn parameters based on real data. 
§  Different models should be learned for different angles at 

which the sensor beam hits the obstacle. 
§  Determine expected distances by ray-tracing. 
§  Expected distances can be pre-processed. 
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Scan-based Model 
§  Beam-based model is … 

§  not smooth for small obstacles and at edges. 
§  not very efficient. 

§  Idea: Instead of following along the beam, 
just check the end point. 
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Scan-based Model 
§  Probability is a mixture of … 

§  a Gaussian distribution with mean at distance to 
closest obstacle, 

§  a uniform distribution for random 
measurements, and  

§  a small uniform distribution for max range 
measurements. 

§  Again, independence between different 
components is assumed. 
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Example 

P(z|x,m) 

Map m 

Likelihood field 
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San Jose Tech Museum 

Occupancy grid map Likelihood field 
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Scan Matching 
§  Extract likelihood field from scan and use it 

to match different scan. 
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Scan Matching 
§  Extract likelihood field from first scan and 

use it to match second scan. 

~0.01 sec 
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Properties of Scan-based Model 

§  Highly efficient, uses 2D tables only. 
§  Smooth w.r.t. to small changes in robot 

position. 

§  Allows gradient descent, scan matching. 

§  Ignores physical properties of beams. 

§  Will it work for ultrasound sensors? 



29 

Additional Models of Proximity 
Sensors 

§  Map matching (sonar, laser): generate 
small, local maps from sensor data and 
match local maps against global model. 

§  Scan matching (laser): map is represented 
by scan endpoints, match scan into this 
map. 

§  Features (sonar, laser, vision): Extract 
features such as doors, hallways from 
sensor data. 
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Landmarks 

§  Active beacons (e.g., radio, GPS) 
§  Passive (e.g., visual, retro-reflective) 
§  Standard approach is triangulation 

§  Sensor provides 
§  distance, or 
§  bearing, or 
§  distance and bearing. 
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Distance and Bearing 
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Probabilistic Model 
1.  Algorithm landmark_detection_model(z,x,m): 

 

2.   	


3.    

 

4.    

 

5.  Return   
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Distributions 
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Distances Only 
No Uncertainty 
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Bearings Only 
No Uncertainty 
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Bearings Only With Uncertainty 
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Most approaches attempt to find estimation mean. 
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Summary of Sensor Models 
§  Explicitly modeling uncertainty in sensing is key to 

robustness. 
§  In many cases, good models can be found by the 

following approach: 
1. Determine parametric model of noise free measurement. 
2.  Analyze sources of noise. 
3.  Add adequate noise to parameters (eventually mix in 

densities for noise). 
4.  Learn (and verify) parameters by fitting model to data. 
5.  Likelihood of measurement is given by “probabilistically 

comparing” the actual with the expected measurement. 
§  This holds for motion models as well. 
§  It is extremely important to be aware of the 

underlying assumptions! 


