Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello
Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)

- Particle filters are a way to **efficiently** represent non-Gaussian distribution

- Basic principle
 - Set of state hypotheses (“particles”)
 - Survival-of-the-fittest
Sample-based Localization (sonar)
Mathematical Description

- Set of weighted samples

\[S = \{ \langle s[i], w[i] \rangle \mid i = 1, \ldots, N \} \]

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x) \]
Function Approximation

- Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval

- How to draw samples from a function/distribution?
Rejection Sampling

- Let us assume that \(f(x) < 1 \) for all \(x \)
- Sample \(x \) from a uniform distribution
- Sample \(c \) from \([0,1]\)
- if \(f(x) > c \) keep the sample
 otherwise reject the sample
Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the “differences between g and f”
- $w = \frac{f}{g}$
- f is called target
- g is called proposal
- Pre-condition: $f(x) > 0 \Rightarrow g(x) > 0$
- Derivation: See webpage
Importance Sampling with Resampling: Landmark Detection Example
Distributions
Distributions

Wanted: samples distributed according to
\[p(x| z_1, z_2, z_3) \]
This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.
Importance Sampling

Target distribution \(f : p(x \mid z_1, z_2, \ldots, z_n) = \frac{\prod_{k} p(z_k \mid x) \cdot p(x)}{p(z_1, z_2, \ldots, z_n)} \)

Sampling distribution \(g : p(x \mid z_i) = \frac{p(z_i \mid x)\cdot p(x)}{p(z_i)} \)

Importance weights \(w : \frac{f}{g} = \frac{p(x \mid z_1, z_2, \ldots, z_n)}{p(x \mid z_i)} = \frac{p(z_i) \prod_{k \neq i} p(z_k \mid x)}{p(z_1, z_2, \ldots, z_n)} \)
Importance Sampling with Resampling

Weighted samples

After resampling
Particle Filters
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x) \]

\[w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x) \]
Robot Motion

\[Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') \, dx' \]
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^-(x) \]

\[w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^-(x)}{Bel^-(x)} = \alpha \ p(z \mid x) \]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x|u,x') \, Bel(x') \, dx' \]
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 \[\text{weight} = \frac{\text{target distribution}}{\text{proposal distribution}} \]

- Resampling: “Replace unlikely samples by more likely ones”
Particle Filter Algorithm

1. Algorithm `particle_filter`\((S_{t-1}, u_t, z_t)\):
2. \(S_t = \emptyset, \ \eta = 0\)
3. For \(i = 1, \ldots, n\) \hspace{1cm} \textit{Generate new samples}
4. Sample index \(j(i)\) from the discrete distribution given by \(w_{t-1}\)
5. Sample \(x_t | x_{t-1}, u_t\) using and
6. \(w_t^i = p(z_t | x_t^i)\) \hspace{1cm} \textit{Compute importance weight}
7. \(\eta = \eta + w_t^i\) \hspace{1cm} \textit{Update normalization factor}
8. \(S_t = S_t \cup \{<x_t^i, w_t^i>\}\) \hspace{1cm} \textit{Insert}
9. For \(w_t^i = w_t^i / \eta\) \hspace{1cm} \textit{Normalize weights}
10. \(i = 1, \ldots, n\)
Particle Filter Algorithm

\[Bel(x_t) = p(z_t | x_t) \ p(x_t | x_{t-1}, u_t) \ Bel(x_{t-1}) \ dx_{t-1} \]

- Draw \(x^i_{t-1} \) from \(Bel(x_{t-1}) \)
- Draw \(x^i_t \) from \(p(x_t | x^i_{t-1}, u_t) \)
- Importance factor for \(x^i_t \):

\[
 w^i_t = \frac{\text{target distribution}}{\text{proposal distribution}} \\
 = \frac{p(z_t | x_t) \ p(x_t | x_{t-1}, u_t) \ Bel(x_{t-1})}{p(x_t | x_{t-1}, u_t) \ Bel(x_{t-1})} \\
\mu \ p(z_t | x_t) \\
\]
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, $n \log n$

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance
Resampling Algorithm

1. Algorithm **systematic_resampling**(S,n):

2. \(S' = \emptyset, c_1 = w^1 \)

3. **For** \(i = 2 \ldots n \) \hspace{1cm} **Generate cdf**

4. \(c_i = c_{i-1} + w^i \)

5. \(u_1 \sim U[0,n^{-1}], i = 1 \) \hspace{1cm} **Initialize threshold**

6. **For** \(j = 1 \ldots n \) \hspace{1cm} **Draw samples ...**

7. **While** (\(u_j > c_i \)) \hspace{1cm} **Skip until next threshold reached**

8. \(i = i + 1 \)

9. \(S' = S' \cup \{< x^i, n^{-1} >\} \) \hspace{1cm} **Insert**

10. \(u_{j+1} = u_j + n^{-1} \) \hspace{1cm} **Increment threshold**

11. **Return** \(S' \)

Also called **stochastic universal sampling**
Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

[For details, see PDF file on the lecture web page]
Motion Model Reminder

According to the estimated motion
Motion Model Reminder

- Decompose the motion into
 - Traveled distance
 - Start rotation
 - End rotation
Motion Model Reminder

- Uncertainty in the translation of the robot: Gaussian over the traveled distance
- Uncertainty in the rotation of the robot: Gaussians over start and end rotation
- For each particle, draw a new pose by sampling from these three individual normal distributions
Motion Model Reminder
Proximity Sensor Model Reminder

Laser sensor

Sonar sensor
Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot

- The set of weighted particles approximates the posterior belief about the robot’s pose (target distribution)
Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights
Mobile Robot Localization Using Particle Filters (3)

Why is resampling needed?

- We only have a finite number of particles
- Without resampling: The filter is likely to loose track of the “good” hypotheses
- Resampling ensures that particles stay in the meaningful area of the state space
Sample-based Localization (sonar)
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Using Ceiling Maps for Localization

[Dellaert et al. 99]
Vision-based Localization

$P(z|x)$

z

$h(x)$
Under a Light

Measurement z: $P(z|x)$:
Next to a Light

Measurement z: $P(z|x)$:
Elsewhere

Measurement z: $P(z|x)$:
Global Localization Using Vision
Limitations

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot

- How can we deal with localization errors (i.e., the kidnapped robot problem)?
Approaches

- Randomly insert a fixed number of samples
- This assumes that the robot can be teleported at any point in time
- Alternatively, insert random samples proportional to the average likelihood of the particles
Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter
Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.