Introduction to Mobile Robotics

SLAM: Simultaneous Localization and Mapping

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

What is SLAM?

- Estimate the pose of a robot and the map of the environment at the same time
- SLAM is hard, because
 - a map is needed for localization and
 - a good pose estimate is needed for mapping
- Localization: inferring location given a map
- Mapping: inferring a map given locations
- SLAM: learning a map and locating the robot simultaneously

The SLAM Problem

SLAM is a chicken-or-egg problem:

- a map is needed for localization and
- → a pose estimate is needed for mapping

SLAM Applications

 SLAM is central to a range of indoor, outdoor, in-air and underwater applications for both manned and autonomous vehicles.

Examples:

- At home: vacuum cleaner, lawn mower
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization

SLAM Applications

Map Representations

Examples: Subway map, city map, landmark-based map

Maps are **topological** and/or **metric models** of the environment

Map Representations in Robotics

Grid maps or scans, 2d, 3d

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01; Grisetti et al., 05; ...]

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

The SLAM Problem

- SLAM is considered a fundamental problems for robots to become truly autonomous
- Large variety of different SLAM approaches have been developed
- The majority uses probabilistic concepts
- History of SLAM dates back to the mid-eighties

Feature-Based SLAM

Given:

- The robot's controls $oldsymbol{U}_{1:k} = \{oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_k\}$
- Relative observations $oldsymbol{Z}_{1:k} = \{oldsymbol{z}_1, oldsymbol{z}_2, \dots, oldsymbol{z}_k\}$

Wanted:

- Map of features $oldsymbol{m} = \{oldsymbol{m}_1, oldsymbol{m}_2, \dots, oldsymbol{m}_n\}$
- Path of the robot $oldsymbol{X}_{1:k} = \{oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_k\}$

Feature-Based SLAM

 Absolute robot poses

- Absolute
 landmark
 positions
- But only relative measurements of landmarks

Why is SLAM a hard problem?

1. Robot path and map are both **unknown**

2. Errors in map and pose estimates correlated

Why is SLAM a hard problem?

- The mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)

SLAM: Simultaneous Localization And Mapping

Full SLAM:

 $p(x_{0:t}, m | z_{1:t}, u_{1:t})$

Estimates entire path and map!

Online SLAM:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \, dx_1 dx_2 \dots dx_{t-1}$$

Estimates most recent pose and map!

 Integrations (marginalization) typically done recursively, one at a time

Graphical Model of Full SLAM

 $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

Graphical Model of Online SLAM

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 \dots dx_{t-1}$$

Motion and Observation Model

Remember the KF Algorithm

- 1. Algorithm **Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- 3. $\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$ 4. $\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$
- 5. Correction:
- 6. $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$
- 7. $\mu_t = \mu_t + K_t(z_t C_t \mu_t)$
- $\mathbf{8.} \qquad \boldsymbol{\Sigma}_t = (I K_t C_t) \boldsymbol{\Sigma}_t$
- 9. Return μ_t , Σ_t

EKF SLAM: State representation

Localization

3x1 pose vector
$$x_k = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix}$$
 $C_k = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{yx} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{\theta x} & \sigma_{\theta y} & \sigma_{\theta}^2 \end{bmatrix}$

SLAM

Landmarks **simply extend** the state. **Growing** state vector and covariance matrix!

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

EKF SLAM: State representation

Map with *n* landmarks: (3+2*n*)-dimensional Gaussian

$$Bel(x_{t},m_{t}) = \left\langle \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{yl_{1}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{\theta}^{2} \\ \sigma_{xl_{1}} & \sigma_{yl_{1}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{1}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \sigma_{l_{2}}^{2} & \cdots & \sigma_{l_{2}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{N}} & \sigma_{l_{2}l_{N}} & \cdots & \sigma_{l_{N}}^{2} \end{pmatrix} \right\rangle$$

Can handle hundreds of dimensions

Filter Cycle, Overview:

- 1. State prediction (odometry)
- 2. Measurement prediction
- 3. Observation
- 4. Data Association

- 5. Update
- 6. Integration of new landmarks

State Prediction

Odometry:

$$\hat{\mathbf{x}}_R = f(\mathbf{x}_R, \mathbf{u})$$
$$\hat{C}_R = F_x C_R F_x^T + F_u U F_u^T$$

Robot-landmark crosscovariance prediction:

$$\hat{C}_{RM_i} = F_x \, C_{RM_i}$$

(skipping time index k)

Measurement Prediction

Global-to-local frame transform *h*

$$\mathbf{\hat{z}}_k = h(\mathbf{\hat{x}}_k)$$

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

Observation

(x,y)-point landmarks

 $\mathbf{z}_k = egin{bmatrix} x_1 \ y_1 \ x_2 \ y_2 \end{bmatrix} = egin{bmatrix} \mathbf{z}_1 \ \mathbf{z}_2 \end{bmatrix} \ R_k = egin{bmatrix} R_1 & 0 \ 0 & R_2 \end{bmatrix}$

 $\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$

Data Association

Associates predicted measurements $\hat{\mathbf{z}}_k^i$ with observation \mathbf{z}_k^j

 $\begin{array}{rcl} \boldsymbol{\nu}_k^{ij} & = & \mathbf{z}_k^j - \mathbf{\hat{z}}_k^i \\ S_k^{ij} & = & R_k^j + H^i \, \hat{C}_k \, H^{i \, T} \end{array}$

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} \qquad C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

Filter Update

The usual Kalman filter expressions $K_k = \hat{C}_k H^T S_k^{-1}$ $\mathbf{x}_k = \mathbf{\hat{x}}_k + K_k \nu_k$ $C_k = (I - K_k H) \hat{C}_k$

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix}_{k} C_{k} = \begin{bmatrix} C_{R} & C_{RM_{1}} & C_{RM_{2}} & \cdots & C_{RM_{n}} \\ C_{M_{1}R} & C_{M_{1}} & C_{M_{1}M_{2}} & \cdots & C_{M_{1}M_{n}} \\ C_{M_{2}R} & C_{M_{2}M_{1}} & C_{M_{2}} & \cdots & C_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{M_{n}R} & C_{M_{n}M_{1}} & C_{M_{n}M_{2}} & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

Integrating New Landmarks

State augmented by $\mathbf{m}_{n+1} = g(\mathbf{x}_R, \mathbf{z}_j)$ $C_{M_{n+1}} = G_R C_R G_R^T + G_z R_j G_z^T$

Cross-covariances: $C_{M_{n+1}M_i} = G_R C_{RM_i}$ $C_{M_{n+1}R} = G_R C_R$

Map Correlation matrix

Мар

Correlation matrix

Мар

Correlation matrix

EKF SLAM: Correlations Matter

What if we neglected cross-correlations?

$$C_{k} = \begin{bmatrix} C_{R} & 0 & \cdots & 0 \\ 0 & C_{M_{1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{M_{n}} \end{bmatrix}_{k}$$

 $C_{RM_i} = \mathbf{0}_{3 \times 2}$

$$C_{M_iM_{i+1}} = \mathbf{0}_{2\times 2}$$

EKF SLAM: Correlations Matter

What if we neglected cross-correlations?

$$C_{k} = \begin{bmatrix} C_{R} & 0 & \cdots & 0 \\ 0 & C_{M_{1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{M_{n}} \end{bmatrix}_{k} \qquad C_{RM_{i}} = \mathbf{0}_{3 \times 2}$$

- Landmark and robot uncertainties would become overly optimistic
- Data association would fail
- Multiple map entries of the same landmark
- Inconsistent map

Want to derive:

 $C_{YZ} = A \ C_{XZ}$

 In words: how is the cross-correlation C_{XZ} between two normally distributed RVs X and Z with moments x, C_X and z, C_Z affected by a linear transform of X of the form

 $\mathbf{y} = A \mathbf{x} + B$

• We recall that the following holds: $C_Y = A C_X A^T$

We augment the linear mapping by the variable of interest

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix}$$

Note that this implements

$$\mathbf{y} = A \mathbf{x} + B$$

 $\mathbf{z} = \mathbf{z}$

Renaming the variables of the augmented system

$$\mathbf{x}' = [\mathbf{x} \ \mathbf{z}]^T \qquad \mathbf{y}' = [\mathbf{y} \ \mathbf{z}]^T$$

gives $\mathbf{y}' = A' \mathbf{x}' + B'$ with the augmented covariance matrices

$$C_{Y'} = \begin{bmatrix} C_Y & C_{YZ} \\ C_{ZY} & C_Z \end{bmatrix} \quad C_{X'} = \begin{bmatrix} C_X & C_{XZ} \\ C_{ZX} & C_Z \end{bmatrix}$$

The augmented covariance matrix is again given by

$$C_{Y'} = A' C_{X'} A'^T$$

Resubstitution yields

$$C_{Y'} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} C_X & C_{XZ} \\ C_{ZX} & C_Z \end{bmatrix} \begin{bmatrix} A^T & 0 \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} AC_X & AC_{XZ} \\ C_{ZX} & C_Z \end{bmatrix} \begin{bmatrix} A^T & 0 \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} AC_X A^T & AC_{XZ} \\ C_{ZX} A^T & C_Z \end{bmatrix}$$

Thus:

$$C_{YZ} = A \ C_{XZ}$$

SLAM: Loop Closure

- Recognizing an already mapped area, typically after a long exploration path (the robot "closes a loop")
- Structurally identical to data association, but
 - high levels of ambiguity
 - possibly useless validation gates
 - environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

SLAM: Loop Closure

Before loop closure

SLAM: Loop Closure

After loop closure

SLAM: Loop Closure

- By revisiting already mapped areas, uncertainties in robot and landmark estimates can be **reduced**
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Exploration: the problem of where to acquire new information
- → See separate chapter on exploration

KF-SLAM Properties (Linear Case)

The **determinant** of any sub-matrix of the map covariance matrix **decreases monotonically** as successive observations are made

- When a new landmark is initialized, its **uncertainty** is maximal
- Landmark uncertainty **decreases** monotonically with each new observation

40

KF-SLAM Properties (Linear Case)

 In the limit, the landmark estimates become fully correlated

KF-SLAM Properties (Linear Case)

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.

EKF SLAM Example: Victoria Park Dataset

Victoria Park: Data Acquisition

[courtesy by E. Nebot]

Victoria Park: Estimated Trajectory

45

Victoria Park: Landmarks

[courtesy by E. Nebot]

EKF SLAM Example: Tennis Court

[courtesy by J. Leonard] 47

EKF SLAM Example: Tennis Court

odometry

estimated trajectory

[courtesy by John Leonard] 48

EKF SLAM Example: Line Features

KTH Bakery Data Set

10

156

EKF-SLAM: Complexity

- Cost per step: quadratic in n, the number of landmarks: O(n²)
- Total cost to build a map with n landmarks: O(n³)
- Memory consumption: O(n²)
- Problem: becomes computationally intractable for large maps!
- There exists variants to circumvent these problems

SLAM Techniques

- EKF SLAM
- FastSLAM
- Graph-based SLAM
- Topological SLAM (mainly place recognition)
- Scan Matching / Visual Odometry (only locally consistent maps)
- Approximations for SLAM: Local submaps, Sparse extended information filters, Sparse links, Thin junction tree filters, etc.

EKF-SLAM: Summary

- The first SLAM solution
- Convergence proof for linear Gaussian case
- Can diverge if nonlinearities are large (and the reality is nonlinear...)
- Can deal only with a single mode
- Successful in medium-scale scenes
- Approximations exists to reduce the computational complexity