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What is SLAM?

= Estimate the pose of a robot and the map of
the environment at the same time

= SLAM is hard, because

= 3 map is needed for localization and
= a good pose estimate is needed for mapping

= Localization: inferring location given a
map

= Mapping: inferring a map given locations

= SLAM: |learning a map and locating the
robot simultaneously



The SLAM Problem

= SLAM is a chicken-or-egg problem:
— a map is needed for localization and
— a pose estimate is needed for mapping




SLAM Applications

= SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

= At home: vacuum cleaner, lawn mower

= Air: surveillance with unmanned air vehicles
= Underwater: reef monitoring

= Underground: exploration of mines

= Space: terrain mapping for localization



SLAM Applications
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Map Representations

Examples: Subway map, city map,
landmark-based map
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Maps are topological and/or metric
models of the environment



Map Representations in Robotics

= Grid maps or scans, 2d, 3d

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99;
Haehnel, 01; Grisetti et al., 05; ...]

= Landmark-based
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...



The SLAM Problem

= SLAM is considered a fundamental

problems for robots to become truly
autonomous

= Large variety of different SLAM
approaches have been developed

= The majority uses probabilistic
concepts

= History of SLAM dates back to the
mid-eighties



Feature-Based SLAM

Given:
= The robot’ s controls

Ul:/c — {ulvu27"'7’u’k} .
= Relative observations

Zl:k — {21,22,...,Zk} ;....
Wanted:
= Map of features

m = {my,mo,..., my,}

= Path of the robot

Xl:k — {331,m2, .. .,$k}



Feature-Based SLAM

= Absolute

Features and Landmarks

Vehicle-Feature Relative

robot poses
= Absolute

Observation

landmark
positions
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Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
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Why is SLAM a hard problem?

= The mapping between observations and
landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences (divergence)
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SLAM: Simultaneous
Localization And Mapping

= Full SLAM:

p('XO:t 1M l Z1:t ’ulzt)

Estimates entire path and map!

= Online SLAM:
p(x,mlz. u.,)= ff"‘fp(xlzt’m 20, 0,) dx,dx, ..dx,_,

Estimates most recent pose and map!

= Integrations (marginalization) typically

done recursively, one at a time 3



Graphical Model of Full SLAM

p('xl:t 9 m | Zl:t? Z/ll:t)




Graphical Model of Online SLAM

p(x,,m|z,,u,) =ff---fp(x1:wm |z, uy,) dx,dx,...dx,_,
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Motion and Observation Model

"Observation model"
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Remember the KF Algorithm

Algorithm Kalman_filter(u,.,, =,.;, U, Z,):

Prediction:
Et = Aﬂut—l +Btut
> =A% _A +R,

-1

A WN B~

Correction:
K, =%.C/(C2C+0)"
u, =u, +Kt(Zt _Cttut)
Zt = (I_Ktct)if

O N W

Return u,, Z;

17



EKF SLAM: State representation

= Localization

2
3x1 pose vector Tk Oz Oay Oao
. Xk — Yk Ck: — Oyz Oy Oy6
3x3 cov. matrix 0, Con 0oy O
= SLAM

Landmarks simply extend the state.
Growing state vector and covariance matrix!

XR Cr Crvy, Crym, -+ Cru,
m; Cvur Cvy Cuim, - Cum,
| mn dE | CMnR CMnM]_ CMnM2 e CMn dk




EKF SLAM: State representation

= Map with n landmarks: (3+2n)-dimensional
Gaussian

v Oy i, i, xly

y Oxy Oy2 Oy@ Oyll Oylz Gle

0 Op Oy Og Oy, Og, = Oy y

Bel(x,,m)) = L. o, o, 0, 0, 0, 0,
lz Oy, Oy, Og, Oy 0122 O,

lN Oy, Oy, Og, 01, Oy Y 12N

= Can handle hundreds of dimensions
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EKF SLAM: Building the Map

Filter Cycle, Overview:

A U1 AW NN B

. State prediction (odometry)

. Measurement prediction

. Observation

. Data Association g}«ﬁ{g

. Update

. Integration of new landmarks
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EKF SLAM: Building the Map

= State Prediction Odometry:
)ACR — f(XR7 11)
w Cr=F,CrFI + F,UFT

G’ ~~~~~~~~~ Robot-landmark cross-
covariance prediction:

(skipping time index k)
[ Xp | [ Cgr Crvy CrMm, -+ Crum,
m; Cvur Cvy Cwmom, 0 Cuyu,
x, = | M2 Cp= | Omer Cwonmy  Cm, -0 Chiowm,
m,, k i C’MnR CMan CMnM2 U CMn dE
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EKF SLAM: Building the Map

= Measurement Prediction

a Global-to-local
frame transform #
"""" Zji — ]’L(Xk)
[ xp | [ Cgr Cryv, Crm, - OCrum, |
m; Cvyr Crvy  Cumym, 0 Cum,
X, = | M2 Cp=| Omer Conmy COnm, -0 O,
m, |, | Cm,r Cumony Cmpm, -+ COm,, |y
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EKF SLAM: Building the Map

* Observation (x,y)-point landmarks

. - Y1 | 21 ]
2k = Lo o Z9
\\\ .. I y2 ]
(> B o
- - LVl

| XR |  Cr Crmy  Crm, -+ Cgru,
m; Cwvr Cuy COminsy, - ngMn
X, = | m2 Cp=| Omer Conmy COnm, -0 O,
k B .
. . i Cuy
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EKF SLAM: Building the Map

= Data Association

N 4
[ aa?

Xk =

[ Cg Cru,
Cv,r  Chuy
Cvm,r  Cryn,y

| Cm,r Cum,ny

Associates predicted
measurements z;
with observation z;
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EKF SLAM: Building the Map

= Filter Update

The usual Kalman
6 filter expressions

KkZCA'kHTSk_I
g X = Xi + K g
| Cr = (I — K H)Cy,

XR Cr Crvy Crm, -+ Cgrum,
m; Cur  Crmy  Cuym, 0 Cum,

X, = | M2 C,=| Omer Oy COm, -0 Chiowm,
m, |, | Cm,r CMmomy Cmpm, -+ COm,, |y




EKF SLAM: Building the Map

= Integrating New Landmarks
State augmented by
Pt

My1 = g(XR,Zj)
Cu,,, = GRCrGEL + G, R; GL

g Cross-covariances:
| CM,1M; = GrCRM;
a CuM,..r = GRrRCR

XR | [ Ckr Cru, Crv, - CRrum, CRMpi1 |
m; Cmir Cwm, Cviv, - Cumym,  Caiis
my Cvyr  Crym, Cm, o CumyMm,  CumpMm, s
X = Ck = . . . :
m,, Cv,r  Cwm,m, Cyv,m, - Cum, CmMm,M, .y
| mn+1 dk | CMn+1R CMn+1M1 CMn+1M2 o CMn+1Mn CMn_|_1 k 26




EKF SLAM

Map

Correlation matrix
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EKF SLAM

Map

Correlation matrix
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EKF SLAM

Correlation matrix

Map
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

Cr =

R

0

0

0 Cuy -

0

. Cuy

n —

0

0

Crm, = 03%2

CMiM/i_*_]_ — O2X2
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

—CR 0 0 |

0 Cu - 0

Cr=1| . o .
] 0 0 CMn_k

Crum; = 03x2

CMq;Mq;_}_l — O2X2

» Landmark and robot uncertainties would

become overly optimistic
» Data association would fail

= Multiple map entries of the same landmark

= Inconsistent map
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Error Propagation (cont.)

= Want to derive:
Cyz =ACxgz

= In words: how is the cross-correlation Cy,
between two normally distributed RVs X and
Z with moments x, C, and z, C, affected by
a linear transfoym of X of the form

y=Ax+B

= We recall that the following holds:
Cy =ACx A"

32



Error Propagation (cont.)

= We augment the linear mapping by the
variable of interest

i Yy ] i A 0 1 [ X ] i B ]
y/ 0 [ y/ 0

= Note that this implements
y=Ax+B

Z = Z



Error Propagation (cont.)

Renaming the variables of the augmented system
X/:[X Z]T y/:[y Z]T

gives y' = A’ x' + B’ with the augmented

covariance matrices

| Cy Cygz B
Cvr = Czy Cgz Cr =

The augmented covariance matrix is again given by
Oy/ = A’ OX/ A/T
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Error Propagation (cont.)

Resubstitution yields

o A 0] Cx Cxz || AT 0
e = 0 [ Czx Uy 0 7
| Acx Acxz || AT o
- Crx Cy 0 I
| ACx AT ACxy
| Ozx AT g

Thus:
Cyz =ACxy

|
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SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot "closes a loop”)

= Structurally identical to data association,
but
= high levels of ambiguity
= possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)

36



SLAM: Loop Closure

= Before loop closure
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SLAM: Loop Closure

= After loop closure

b

oo
- @@
B ®
&
P @ g ®
o ®

#

%

Y

=D
PR YA T T T T O R S S

.*.
L.
+

-+

+
_&.
¥

#

4

38



SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.g.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties

(Linear Case)

= The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

2F | = When a new land-
mark is initialized,
its uncertainty is

maximal

= |Landmark uncer-
tainty decreases
monotonically

"y
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Standard Deviation in X (m)

/
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Time (sec) [Di1s1(§anayake et al., 2001] 4¢



KF-SLAM Properties
(Linear Case)

= In the limit, the landmark estimates
become fully correlated

[Dissanayake et al., 2001] 44



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
in the vehicle location estimate.

L ¢
> = &

O &

[Dissanayake et al., 2001] 4>




EKF SLAM Example:
Victoria Park Dataset
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Victoria Park: Data Acquisition

[courtesy by E. Nebot]
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Victoria Park: Estimated
Trajectory
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard]



EKF SLAM Example: Tennis
Court
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[courtesy by John Leonard] 48
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EKF SLAM Example: Line

Features
= KTH Bakery Data Set
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[Wulf et al., ICRA 04]



EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of l[andmarks: O(n?)

= Total cost to build a map with n
landmarks: O(n?3)

= Memory consumption: O(n?2)

= Problem: becomes computationally
intractable for large maps!

= There exists variants to circumvent
these problems
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SLAM Techniques

= EKF SLAM
= FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.
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EKF-SLAM: Summary

» The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge if nonlinearities are large
(and the reality is nonlinear...)

= Can deal only with a single mode
= Successful in medium-scale scenes

= Approximations exists to reduce the
computational complexity
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