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SLAM –  
Landmark-based FastSLAM 

Introduction to 
Mobile Robotics 

Partial slide courtesy of Mike Montemerlo 
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Bennewitz, Diego Tipaldi, Luciano Spinello 
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§  SLAM stands for simultaneous localization 
and mapping 

§  The task of building a map while estimating  
the pose of the robot relative to this map 

§  Why is SLAM hard?   
Chicken-or-egg problem:  
§  A map is needed to localize the robot  
§  A pose estimate is needed to build a map 

The SLAM Problem 
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 Given: 
§  The robot’s 

controls 
§  Observations of 

nearby features 

 Estimate: 
§  Map of features 
§  Path of the robot 

The SLAM Problem 
A robot moving though an unknown, static environment 
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 Typical models are: 
§  Feature maps 
§  Grid maps (occupancy or reflection probability 

maps) 

  

Map Representations 

today 
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Why is SLAM a Hard Problem? 

SLAM: robot path and map are both unknown!  

Robot path error correlates errors in the map 
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Why is SLAM a Hard Problem? 

§  In the real world, the mapping between 
observations and landmarks is unknown 

§  Picking wrong data associations can have 
catastrophic consequences 

§  Pose error correlates data associations 

Robot pose 
uncertainty 



7 

Data Association Problem 

§  A data association is an assignment of 
observations to landmarks 

§  In general there are more than  
(n observations, m landmarks) possible 
associations 

§  Also called “assignment problem” 
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§  Represent belief by random samples 
§  Estimation of non-Gaussian, nonlinear 

processes 

§  Sampling Importance Resampling (SIR) principle 
§ Draw the new generation of particles 
§ Assign an importance weight to each particle 
§ Resampling  

§  Typical application scenarios are tracking, 
localization, … 

Particle Filters 
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§  A particle filter can be used to solve both problems 

§  Localization: state space < x, y, θ>	



§  SLAM: state space < x, y, θ, map>  
§  for landmark maps = < l1, l2, …, lm> 
§  for grid maps = < c11, c12, …, c1n, c21, …, cnm>	



§  Problem: The number of particles needed to 
represent a posterior grows exponentially with  
the dimension of the state space! 

Localization vs. SLAM 



10 

§  Is there a dependency between the 
dimensions of the state space? 

§  If so, can we use the dependency to solve 
the problem more efficiently? 

Dependencies  
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§  Is there a dependency between the 
dimensions of the state space? 

§  If so, can we use the dependency to solve 
the problem more efficiently? 

§  In the SLAM context 
§  The map depends on the poses of the 

robot. 
§ We know how to build a map given the 

position of the sensor is known. 

Dependencies 
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Factored Posterior (Landmarks) 

Factorization first introduced by Murphy in 1999 

poses map observations & movements 
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Factored Posterior (Landmarks) 

SLAM posterior 
Robot path posterior 

 landmark positions 

Factorization first introduced by Murphy in 1999 

Does this help to solve the problem? 

poses map observations & movements 
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Mapping using Landmarks 

. . . 

Landmark 1 

observations 

Robot poses 

controls 

x1 x2 xt 

u1  ut-1 

l2 

l1 

z1 

z2 

x3 

u2 

z3 

zt 

Landmark 2 

x0 

u0  



Bayes Network and D-Separation 
(See AI or PGM course)  

§     and   are independent if d-separated by         
§     d-separates    from    if every undirected 

path between    and    is blocked by     
§  A path is blocked by    if there is a node W 

on the graph such that either: 
§  W has converging arrows along the path  

(→ W ←) and neither W nor its descendants are 
observed (in V), or 

§  W does not have converging arrows along the 
path (→ W → or ← W →) and W is observed  
(W      ). 

15 
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Knowledge of the robot’s true path renders 
landmark positions conditionally independent 

Mapping using Landmarks 

. . . 

Landmark 1 

observations 

Robot poses 

controls 

x1 x2 xt 

u1  ut-1 

l2 

l1 

z1 

z2 

x3 

u2 

z3 

zt 

Landmark 2 

x0 

u0  
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Factored Posterior 

Robot path posterior 
(localization problem) Conditionally 

independent  
landmark positions 
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Rao-Blackwellization 

§  This factorization is also called Rao-Blackwellization 
§  Given that the second term can be computed 

efficiently, particle filtering becomes possible! 
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FastSLAM 
§  Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002] 
§  Each landmark is represented by a 2x2  

Extended Kalman Filter (EKF) 
§  Each particle therefore has to maintain M EKFs 

Landmark 1 Landmark 2 Landmark M … x, y, θ 

Landmark 1 Landmark 2 Landmark M … x, y, θ Particle 
#1 

Landmark 1 Landmark 2 Landmark M … x, y, θ Particle 
#2 

Particle 
N 

…
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FastSLAM – Action Update 

Particle #1 

Particle #2 

Particle #3 

Landmark #1 
Filter 

Landmark #2 
Filter 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Landmark #1 
Filter 

Landmark #2 
Filter 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Weight = 0.8 

Weight = 0.4 

Weight = 0.1 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Update map  
of particle #1 

Update map  
of particle #2 

Update map  
of particle #3 
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FastSLAM  -  Video 
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FastSLAM  Complexity 

§  Update robot particles based on 
control ut-1 

§  Incorporate observation zt into 
Kalman filters 

§  Resample particle set 

N = Number of particles 
M = Number of map features 

O(N) 
Constant time  
(per particle) 

O(N•log(M)) 
Log time (per particle) 

O(N•log(M)) 

O(N•log(M)) 
Log time in the number 
of landmarks, linear in  
the number of particles 

Log time (per particle) 
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Data Association Problem 

§  A robust SLAM solution must consider 
possible data associations  

§  Potential data associations depend also  
on the pose of the robot  

§  Which observation belongs to which 
landmark? 
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Multi-Hypothesis Data Association 

§  Data association is done 
on a per-particle basis 
 

§  Robot pose error is 
factored out of data 
association decisions 
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Per-Particle Data Association 

Was the observation 
generated by the red 
or the brown landmark? 

P(observation|red) = 0.3 P(observation|brown) = 0.7 

§  Two options for per-particle data association 
§  Pick the most probable match 
§  Pick an random association weighted by  

the observation likelihoods 
§  If the probability is too low, generate a new 

landmark 
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Results – Victoria Park 

§  4 km traverse 
§  < 5 m RMS 

position error 
§  100 particles 

Dataset courtesy of University of Sydney 

Blue = GPS 
Yellow = FastSLAM 
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Results – Victoria Park (Video) 

Dataset courtesy of University of Sydney 
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Results – Data Association 
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FastSLAM Summary 
§  FastSLAM factors the SLAM posterior into 

low-dimensional estimation problems 
§  Scales to problems with over 1 million features 

§  FastSLAM factors robot pose uncertainty 
out of the data association problem 
§  Robust to significant ambiguity in data 

association 
§  Allows data association decisions to be delayed 

until unambiguous evidence is collected 
§  Advantages compared to the classical EKF 

approach (especially with non-linearities) 
§  Complexity of O(N log M) 


