Introduction to Mobile Robotics

SLAM – Grid-based FastSLAM

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello
The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map
- Why is SLAM hard? Chicken and egg problem: a map is needed to localize the robot and a pose estimate is needed to build a map
Mapping using Raw Odometry
Can we solve the SLAM problem if no pre-defined landmarks are available?

Can we use the ideas of FastSLAM to build grid maps?

As with landmarks, the map depends on the poses of the robot during data acquisition.

If the poses are known, grid-based mapping is easy ("mapping with known poses")
Rao-Blackwellization poses map observations & movements

\[p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = \]

\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t}) \]

Factorization first introduced by Murphy in 1999
Rao-Blackwellization

\[p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = \]

\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t}) \]

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999
Rao-Blackwellization

\[p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = \]
\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t}) \]

This is localization, use MCL

Use the pose estimate from the MCL and apply mapping with known poses
A Graphical Model of Mapping with Rao-Blackwellized PFs
Mapping with Rao-Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot.

- Each particle
 - maintains its own map and
 - updates it upon “mapping with known poses”

- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map.
Particle Filter Example

map of particle 1

map of particle 2

3 particles

map of particle 3
Problem

- Each map is quite big in case of grid maps
- Since each particle maintains its own map
- Therefore, one needs to keep the number of particles small

Solution:
Compute better proposal distributions!

Idea:
Improve the pose estimate before applying the particle filter
Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose and map relative to the (i-1)-th pose and map

\[
\hat{x}_t = \underset{x_t}{\operatorname{argmax}} \left\{ p(z_t | x_t, \hat{m}_{t-1}) \cdot p(x_t | u_{t-1}, \hat{x}_{t-1}) \right\}
\]

current measurement

robot motion

map constructed so far
Motion Model for Scan Matching

![Graph showing Raw Odometry and Scan Matching]
Mapping using Scan Matching
FastSLAM with Improved Odometry

- Scan-matching provides a **locally consistent** pose correction

- Pre-correct short odometry sequences using scan-matching and use them as input to FastSLAM

- Fewer particles are needed, since the error in the input is smaller

[Haehnel et al., 2003]
Graphical Model for Mapping with Improved Odometry
FastSLAM with Scan-Matching
FastSLAM with Scan-Matching

Loop Closure
FastSLAM with Scan-Matching
Comparison to Standard FastSLAM

- Same model for observations
- Odometry instead of scan matching as input
- Number of particles varying from 500 to 2,000
- Typical result:
Conclusion (thus far ...)

- The presented approach is a highly efficient algorithm for SLAM combining ideas of scan matching and FastSLAM
- Scan matching is used to transform sequences of laser measurements into odometry measurements
- This version of grid-based FastSLAM can handle larger environments than before in “real time”
What’s Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps
- Use the properties of our sensor when drawing the next generation of particles
The Optimal Proposal Distribution

\[p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)}{\int p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)dx_t} \]

[Arulampalam et al., 01]

For lasers \(p(z_t|x_t, m^{(i)}) \) is extremely peaked and dominates the product.

We can safely approximate \(p(x_t|x_{t-1}^{(i)}, u_t) \) by a constant:

\[p(x_t|x_{t-1}^{(i)}, u_t) \bigg|_{x_t:p(z_t|x_t,m^{(i)})>\epsilon} = c \]
Resulting Proposal Distribution

\[
p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \frac{p(z_t|x_t, m^{(i)})}{\int_{x_t \in \{x | p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) \, dx_t} \]

Gaussian approximation:

\[
p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \mathcal{N}(\mu^{(i)}, \Sigma^{(i)})
\]
Resulting Proposal Distribution

\[p(x_t | x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \approx \frac{p(z_t | x_t, m^{(i)})}{\int_{x_t \in \{x | p(z_t | x, m^{(i)}) > \epsilon\}} p(z_t | x_t, m^{(i)}) \, dx_t} \]

Approximate this equation by a Gaussian:

- Maximum reported by a scan matcher
- Sampled points around the maximum
- Gaussian approximation
- Draw next generation of samples
Estimating the Parameters of the Gaussian for each Particle

\[
\mu^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} x_j p(z_t|x_j, m^{(i)})
\]

\[
\Sigma^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T p(z_t|x_j, m^{(i)})
\]

- \(x_j\) are a set of sample points around the point \(x^*\) the scan matching has converged to.
- \(\eta\) is a normalizing constant
Computing the Importance Weight

\[w_t^{(i)} = w_{t-1}^{(i)} p(z_t|x_{t-1}^{(i)}, m^{(i)}, u_t) \]
\[\approx w_{t-1}^{(i)} \int p(z_t|x_t, m^{(i)}) p(x_t|x_{t-1}^{(i)}, u_t) dx_t \]
\[\approx w_{t-1}^{(i)} c \int_{x_t \in \{x | p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) dx_t \]
\[\approx w_{t-1}^{(i)} c \sum_{j=1}^{K} p(z_t|x_j, m^{(i)}) \]

Sampled points around the maximum of the observation likelihood
Improved Proposal

- The proposal adapts to the structure of the environment
Resampling

- Sampling from an improved proposal reduces the effects of resampling
- However, resampling at each step limits the “memory” of our filter
- Supposed we lose at each frame 25% of the particles, in the worst case we have a memory of only 4 steps.

Goal: reduce the number of resampling actions
Selective Re-sampling

- Re-sampling is dangerous, since important samples might get lost (particle depletion problem)

- In case of suboptimal proposal distributions re-sampling is necessary to achieve convergence.

- Key question: When should we re-sample?
Number of Effective Particles

\[n_{\text{eff}} = \frac{1}{\sum_i (w_t^{(i)})^2} \]

- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal
- \(n_{\text{eff}} \) describes “the variance of the particle weights”
- \(n_{\text{eff}} \) is maximal for equal weights. In this case, the distribution is close to the proposal
Resampling with n_{eff}

- If our approximation is close to the proposal, no resampling is needed.

- We only re-sample when n_{eff} drops below a given threshold ($n/2$).

- See [Doucet, ’98; Arulampalam, ’01]
Typical Evolution of n_{eff}

visiting new areas

closing the first loop

visiting known areas

second loop closure
Intel Lab

- 15 particles
- Four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map
Intel Lab

- **15 particles**
- Compared to FastSLAM with Scan-Matching, the particles are propagated closer to the true distribution
Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map
Outdoor Campus Map - Video
MIT Killian Court

- The “infinite-corridor-dataset” at MIT
MIT Killian Court
Conclusion

- The ideas of FastSLAM can also be applied in the context of grid maps
- Utilizing accurate sensor observation leads to good proposals and highly efficient filters
- It is similar to scan-matching on a per-particle base
- The number of necessary particles and re-sampling steps can seriously be reduced
- Improved versions of grid-based FastSLAM can handle larger environments than naïve implementations in “real time” since they need one order of magnitude fewer samples
More Details on FastSLAM

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, AAAI02 (*The classic FastSLAM paper with landmarks*)

- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03 (*FastSLAM on grid-maps using scan-matched input*)

- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks, IJCAI03 (*An approach to handle big particle sets*)