
1

Path and Motion Planning

Introduction to
Mobile Robotics

Wolfram Burgard, Cyrill Stachniss, Maren

Bennewitz, Diego Tipaldi, Luciano Spinello

2

Motion Planning

Latombe (1991):

éeminently necessary since, by definition, a

robot accomplishes tasks by moving in the real

world.

Goals:

Á Collision - free trajectories.

Á Robot should reach the goal location as
fast as possible.

3

 é in Dynamic Environments

ÁHow to react to unforeseen obstacles?

Áefficiency

Á reliability

ÁDynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib , 99]

ÁGrid map based planning
[Konolige , 00]

ÁNearness Diagram Navigation
[Minguez at al., 2001, 2002]

ÁVector -Field -Histogram+
 [Ulrich & Borenstein , 98]

ÁA*, D*, D* Lite, ARA*, é

4

Two Challenges

ÁCalculate the optimal path taking potential
uncertainties in the actions into account

ÁQuickly generate actions in the case of
unforeseen objects

5

Classic Two - layered Architecture

Planning

Collision
Avoidance

sensor data

map

robot

low frequency

high frequency

sub -goal

motion command

6

Dynamic Window Approach

ÁCollision avoidance: Determine collision -
free trajectories using geometric operations

ÁHere: R obot moves on circular arcs

ÁMotion commands (v,Ȓ)

ÁWhich (v,Ȓ) are admissible and reachable?

7

Admissible Velocities

ÁSpeeds are admissible if the robot would be
able to stop before reaching the obstacle

8

Reachable Velocities

ÁSpeeds that are reachable by acceleration

9

DWA Search Space

Á Vs = all possible speeds of the robot.

Á Va = obstacle free area.

Á Vd = speeds reachable within a certain time frame based on
 possible accelerations.

10

Dynamic Window Approach

ÁHow to choose <v,Ȓ>?

ÁSteering commands are chosen by a
heuristic navigation function.

ÁThis function tries to minimize the travel -
time by:
driving fast in the right direction .

11

Dynamic Window Approach

ÁHeuristic navigation function.

ÁPlanning restricted to < x,y > -space.

ÁNo planning in the velocity space.

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

Navigation Function: [Brock & Khatib, 99]

12

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity.

ÁHeuristic navigation function.

ÁPlanning restricted to < x,y > -space.

ÁNo planning in the velocity space.

Dynamic Window Approach

13

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

Navigation Function: [Brock & Khatib, 99]

Considers cost to
reach the goal.

Maximizes
velocity.

ÁHeuristic navigation function.

ÁPlanning restricted to <x,y> -space.

ÁNo planning in the velocity space.

Dynamic Window Approach

14

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity.

Considers cost to
reach the goal.

Follows grid based path
computed by A*.

ÁHeuristic navigation function.

ÁPlanning restricted to <x,y> -space.

ÁNo planning in the velocity space.

Dynamic Window Approach

15

Navigation Function: [Brock & Khatib, 99] Goal nearness.

Follows grid based path
computed by A*.

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba
Maximizes

velocity.
Considers cost to

reach the goal.

ÁHeuristic navigation function.

ÁPlanning restricted to <x,y> -space.

ÁNo planning in the velocity space.

Dynamic Window Approach

16

Dynamic Window Approach

ÁReacts quickly.

ÁLow CPU power requirements.

ÁGuides a robot on a collision - free path.

ÁSuccessfully used in a lot of real -world
scenarios.

ÁResulting trajectories sometimes sub -
optimal.

ÁLocal minima might prevent the robot from
reaching the goal location.

17

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

18

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

Robot s
velocity.

19

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

Preferred
direction of NF.

Robot s
velocity.

20

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

21

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

22

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

ÁThe robot drives too fast at c 0 to enter
corridor facing south.

23

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

24

Problems of DWAs

goalnfnfvelNF Ö+DÖ+Ö+Ö= dgba

25

Problems of DWAs

ÁSame situation as in the beginning.

 Č DWAs have problems to reach the goal.

26

Problems of DWAs

ÁTypical problem in a real world situation:

ÁRobot does not slow down early enough to
enter the doorway.

Motion Planning Formulation

ÁThe problem of motion planning can be
stated as follows. Given:

ÁA start pose of the robot

ÁA desired goal pose

ÁA geometric description of the robot

ÁA geometric description of the world

ÁFind a path that moves the robot
gradually from start to goal while
never touching any obstacle

27

Configuration Space

ÁAlthough the motion planning problem is
defined in the regular world, it lives in
another space: the configuration space

ÁA robot configuration q is a specification of

the positions of all robot points relative to
a fixed coordinate system

ÁUsually a configuration is expressed as a
vector of positions and orientations

 28

Configuration Space

Free space and obstacle region

ÁWith being the work space,
the set of obstacles, the robot in
configuration

ÁWe further define

Á : start configuration

Á : goal configuration

29

Then, motion planning amounts to

ÁFinding a continuous path

 with

ÁGiven this setting,
we can do planning
with the robot being
a point in C - space!

Configuration Space

30

C- Space Discretizations

ÁContinuous terrain needs to be discretized
for path planning

ÁThere are two general approaches to
discretize C -spaces:

ÁCombinatorial planning

 Characterizes Cfree explicitely by capturing the
connectivity of Cfree into a graph and finds

solutions using search

ÁSampling - based planning

 Uses collision -detection to probe and
incrementally search the C -space for solution

 31

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

ÁUninformed search: besides the problem
definition, no further information about the
domain ("blind search")

ÁThe only thing one can do is to expand
nodes differently

ÁExample algorithms: breadth - first,
uniform -cost, depth - first, bidirectional, etc .

32

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

Á Informed search: further information
about the domain through heuristics

ÁCapability to say that a node is "more
promising" than another node

ÁExample algorithms: greedy best - first
search, A* , many variants of A*, D*, etc.

33

Search

The performance of a search algorithm is
measured in four ways:

ÁCompleteness: does the algorithm find
the solution when there is one?

ÁOptimality: is the solution the best one of
all possible solutions in terms of path cost?

Á Time complexity: how long does it take
to find a solution?

Á Space complexity: how much memory is
needed to perform the search?

34

Discretized Configuration Space

35

Uninformed Search

ÁBreadth - first

ÁComplete

ÁOptimal if action costs equal

ÁTime and space: O(bd)

ÁDepth - first

ÁNot complete in infinite spaces

ÁNot optimal

ÁTime: O(bm)

ÁSpace: O(bm) (can forget

explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)

36

37

Informed Search: A*

Á What about using A* to plan
the path of a robot?

Á Finds the shortest path

Á Requires a graph structure

Á Limited number of edges

Á In robotics: planning on a 2d
occupancy grid map

38

A*: Minimize the estimated path
costs

Á g(n) = actual cost from the initial state to n.

Á h(n) = estimated cost from n to the next goal.

Á f(n) = g(n) + h(n) , the estimated cost of the
cheapest solution through n.

Á Let h*(n) be the actual cost of the optimal path
from n to the next goal.

Á h is admissible if the following holds for all n :

h(n) ¢ h*(n)

Á We require that for A*, h is admissible (the
straight - line distance is admissible in the
Euclidean Space).

39

Example: Path Planning for
Robots in a Grid - World

40

Deterministic Value Iteration

ÁTo compute the shortest path from
every state to one goal state, use
(deterministic) value iteration.

ÁVery similar to Dijkstra s Algorithm.

ÁSuch a cost distribution is the optimal
heuristic for A*.

41

Typical Assumption in Robotics
for A* Path Planning

ÁThe robot is assumed to be localized.

ÁThe robot computes its path based on
an occupancy grid.

ÁThe correct motion commands are
executed.

Is this always true?

42

Problems

ÁWhat if the robot is slightly delocalized?

ÁMoving on the shortest path guides
often the robot on a trajectory close
to obstacles.

ÁTrajectory aligned to the grid structure.

43

Convolution of the Grid Map

ÁConvolution blurs the map.

ÁObstacles are assumed to be bigger
than in reality.

ÁPerform an A* search in such a
convolved map.

ÁRobot increases distance to obstacles
and moves on a short path !

44

Example: Map Convolution

Á1-d environment, cells c 0, é, c5

ÁCells before and after 2 convolution runs.

45

Convolution

ÁConsider an occupancy map. Than the
convolution is defined as:

ÁThis is done for each row and each
column of the map.

Á Gaussian blur

46

A* in Convolved Maps

ÁThe costs are a product of path length
and occupancy probability of the cells.

ÁCells with higher probability (e.g.,
caused by convolution) are avoided
by the robot.

ÁThus, it keeps distance to obstacles.

ÁThis technique is fast and quite reliable .

47

5D - Planning ï an Alternative to
the Two - layered Architecture

ÁPlans in the full < x,y,ȅ,v,Ȓ> -configuration
space using A * .

Č Considers the robot's kinematic constraints .

ÁGenerates a sequence of steering
commands to reach the goal location.

ÁMaximizes trade -off between driving time
and distance to obstacles.

48

The Search Space (1)

Á What is a state in this space?
<x,y,ȅ,v,Ȓ> = current position and
 speed of the robot

Á How does a state transition look like?
<x 1,y 1,ȅ1,v 1,Ȓ1> <x 2,y 2,ȅ2,v 2,Ȓ2>

 with motion command (v 2,Ȓ2) and

 |v 1-v2| < av, |Ȓ1-Ȓ2| < aȒ. Pose of the
Robot is a result of the motion equations.

49

The Search Space (2)

Idea: search in the discretized
<x,y,ȅ,v,Ȓ> -space.

Problem: the search space is too huge to
be explored within the time constraints
(5+ Hz for online motion plannig) .

Solution: restrict the full search space.

50

The Main Steps of Our Algorithm

1. Update (static) grid map based on
sensory input.

2. Use A * to find a trajectory in the <x,y> -
space using the updated grid map.

3. Determine a restricted 5d -configuration
space based on step 2.

4. Find a trajectory by planning in the
restricted <x,y,ȅ,v,Ȓ>-space.

51

Updating the Grid Map

ÁThe environment is represented as
a 2d -occupency grid map.

ÁConvolution of the map increases
security distance.

ÁDetected obstacles are added.

ÁCells discovered free are cleared.

update

52

Find a Path in the 2d - Space

ÁUse A * to search for the optimal path in the
2d -grid map.

ÁUse heuristic based on a deterministic
value iteration within the static map.

53

Restricting the Search Space

Assumption: the projection of the 5d -path
onto the < x,y > -space lies close to the
optimal 2d -path.

Therefore: construct a restricted search
space (channel) based on the 2d -path.

54

Space Restriction

ÁResulting search space =

 <x, y, ȅ, v, Ȓ> with (x,y) ț channel.

ÁChoose a sub -goal lying on the 2d -path
within the channel.

55

Find a Path in the 5d - Space

ÁUse A * in the restricted 5d -space to find a
sequence of steering commands to reach
the sub -goal.

ÁTo estimate cell costs: perform a
deterministic 2d -value iteration within the
channel.

56

Examples

57

Timeouts

Á Steering a robot online requires to set a
 new steering command every .25 secs.

Č Abort search after .25 secs.

How to find an admissible steering
command?

58

Alternative Steering Command

ÁPrevious trajectory still admissible?
 Č OK

Á If not, drive on the 2d -path or use
DWA to find new command.

59

Timeout Avoidance

Č Reduce the size of the channel if
the 2d -path has high cost.

60

Example

Robot Albert Planning state

start videos

61

Comparison to the DWA (1)

ÁDWAs often have problems entering narrow
passages.

DWA planned path. 5D approach.

62

Comparison to the DWA (1)

ÁDWAs often have problems entering narrow
passages.

DWA planned path. 5D approach.

63

Comparison to the DWA (2)

 The presented approach results in
significantly faster motion when
driving through narrow passages!

64

Comparison to the Optimum

Channel: with length=5m, width=1.1m

Resulting actions are close to the optimal solution.

Rapidly Exploring Random Trees

Á Idea: aggressively probe and explore the
C-space by expanding incrementally
from an initial configuration q0

ÁThe explored territory is marked by a
tree rooted at q0

65

45
iterations

2345
iterations

