Introduction to
Mobile Robotics

Path and Motion Planning

Wolfram Burgard, Cyrill Stachniss, Maren

Bennewitz, Diego Tipaldi, Luciano Spinello

UNI

FREIBURG

Motion Planning

Latombe (1991):

éeminently necessary sir
robot accomplishes tasks by moving in the real
world.

Goals:
A Collision -free trajectories.

A Robot should reach the goal location as
fast as possible.

€ I n Dynamic Envi

A How to react to unforeseen obstacles?
A efficiency
A reliability

A Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib , 99]

A Grid map based planning
[Konolige , 00]

A Nearness Diagram Navigation
[Minguez at al., 2001, 2002]

A Vector -Field - Histogram+
[Ulrich & Borenstein , 98]

AA* D~*, D* Lite, ARA*

I

0,

Two Challenges

A Calculate the optimal path taking potential
uncertainties in the actions into account

A Quickly generate actions in the case of
unforeseen objects

Classic Two -layered Architecture

Planning low frequency
lsub-goal

Collision _—

Avoidance Igh frequency

' ‘motion command
sensor data

Dynamic Window Approach

A Collision avoidance: Determine collision -
free trajectories using geometric operations

A Here: R obot moves on circular arcs
A Motion commands (v ,)R

A Which (v ,)Rare admissible and reachable?

Admissible Velocities

A Speeds are admissible if the robot would be
able to stop before reaching the obstacle

Vo ={(v,w) | v< \/QdiSt(an>a/tmns A
w < y/2dist (v, w)aser}

\S \‘ A 90 cm/sec
left wall corridor
right wall I
\

-90 deg/sec 90 deg/sec

Reachable Velocities

A Speeds that are reachable by acceleration

Vg = {(an> ‘ V& :U — Qrgnst, U T atmnst]
NS [w — Qrott,w + amtt]}

VS\ A 90 cm/sec
dynamic window V,_ i

Va

¥

actdal velocity

50 deg/sec

=
90 deg/sec

A

DWA Search Space

VS\ A 90 cm/sec

=

dynamic window V,_

\

7
’
1 o
’
’
’
‘ ¥
’
’
’
’
‘
’
’
' .
’
7

actdal velocity
Va ’

-90 deg/sec 90 deg/sec

A V. = all possible speeds of the robot.
AV, = obstacle free area.

AV, = speeds reachable within a certain time frame based on
possible accelerations.

VT:VsﬂVaﬂVd

Dynamic Window Approach

AHow to choose <v, R>?

A Steering commands are chosen by a
heuristic navigation function.

A This function tries to minimize the travel
time by:
driving fast In the right direction

10

Dynamic Window Approach

A Heuristic navigation function.
A Planning restricted to < X,y > -space.

A No planning in the velocity space.

Navigation Function: [srock & khatib, 99]

NF =a Qrel+ b Of + gnf +d@oal

11

Dynamic Window Approach

A Heuristic navigation function.
A Planning restricted to < x,y > -space.

A No planning in the velocity space.

Navigation Function: [srock & khatib, 99]

NF =a Qel+ b Of + gnf +d@oal

Maximizes
velocity.

12

Dynamic Window Approach

A Heuristic navigation function.
A Planning restricted to <x,y> -space.

A No planning in the velocity space.

Navigation Function: [srock & khatib, 99]

NF =a Qel+ b @f + gnf +d@oal

[Maxim_izes]/ Considers cost to
velocity. reach the goal. 13

Dynamic Window Approach

A Heuristic navigation function.
A Planning restricted to <x,y> -space.

A No planning in the velocity space.

Navigation Function: [srock & khatib, 99]

NF =a Qel+ b@l&g@nf + d(@oal

[Maxim_izes]/ Considers cost to Follows grid based path
velocity. reach the goal. computed by A*.

Dynamic Window Approach

A Heuristic navigation function.
A Planning restricted to <x,y> -space.

A No planning in the velocity space.

Navigation Function: [cea nearness.N_]
NF =a Qrel+ b@l&g@nf + d(@oal

[Maxim_izes % Considers cost to Follows grid based path
velocity. reach the goal. computed by A*.

Dynamic Window Approach

A Reacts quickly.

A Low CPU power requirements.

A Guides arobotona collision -free path.

A Successfully used in a lot of real -world
scenarios.

A Resulting trajectories sometimes sub -
optimal.

A Local minima might prevent the robot from
reaching the goal location.

16

Problems of DWAS

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

Preferred
direction of NF.

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

NF =a Qel+ b @f + gnf +d@oal

Problems of DWAS

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

NF =a Qel+ b Of +gdnf +d @oal

Problems of DWAS

A Same situation as in the beginning.

C DWAs have problems to reach the goal.

25

Problems of DWAS

A Typical problem in a real world situation:

A Robot does not slow down early enough to
enter the doorway.

26

Motion Planning Formulation

A The problem of motion planning can be
stated as follows. Given:

A A start pose of the robot

A A desired goal pose

A A geometric description of the robot
A A geometric description of the world

A Find a path that moves the robot

gradually from start to goal while
never touching any obstacle

27

Configuration Space

A Although the motion planning problem is
defined in the regular world, it lives In
another space: the configuration space

A A robot configuration g is a specification of
the positions of all robot points relative to
a fixed coordinate system

A Usually a configuration is expressed as a
vector of positions and orientations

28

Configuration Space

Free space and obstacle region

A With W = R"™ing the work space, OeWw
the set of obstacles, .A(q) robot In
configuration ¢geC

Cffree — {QEC ‘A(Q)HO:@}
Cobs = C/Cf'ree

A We further define
41 : start configuration
4G goal configuration

Configuration Space

Then, motion planning amounts to

A Finding a continuous path
7 :10,1] = Chree

with 7(0) = g7, 7(1) = ¢¢

A Given this setting,
we can do planning
with the robot being
a pointin C -space!

C- Space Discretizations

A Continuous terrain needs to be discretized
for path planning
A There are two general approaches to

discretize C -spaces:

A Combinatorial planning

Characterizes C; . explicitely by capturing the
connectivity of C;.. Into a graph and finds
solutions using search

A Sampling -based planning
Uses collision -detection to probe and
iIncrementally search the C -space for solution

31

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

A Uninformed search: Dbesides the problem
definition, no further information about the
domain ("blind search")

A The only thing one can do is to expand
nodes differently

A Example algorithms: breadth -first,
uniform -cost, depth -first, bidirectional, etc

32

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

A Informed search: further information
about the domain through heuristics

A Capability to say that a node is "more
promising"” than another node

A Example algorithms: greedy best -first
search, A* , many variants of A*, D*, etc.

33

Search

The performance of a search algorithm is
measured In four ways:

A Completeness: does the algorithm find
the solution when there is one?

A Optimality: IS the solution the best one of
all possible solutions in terms of path cost?

A Time complexity: how long does it take
to find a solution?

A Space complexity: how much memory Is
needed to perform the search?

34

Discretized Configuration Space

o ® o
b o
& &
&
o
o600
elellle
B
¢ 0101010
Y rs

35

Uninformed Search

A Breadth -first

A Complete 5
A Optimal if action costs equal e / /‘}3
_ (5) (6
A Time and space: O(l)) R/
@

A Depth -first
A Not complete in infinite spaces
A Not optimal
A Time: O(bM)
A Space: O(bm) (can forget
explored subtrees)

(b: branching factard: goal depthm: max. tree depth)

12

36

Informed Search: A*

A

> > P> D

What about using A* to plan
the path of a robot?

Finds the shortest path
Requires a graph structure

_imited number of edges

n robotics: planning on a 2d
occupancy grid map

37

A*. Minimize the estimated path

COStS
A g(n) = actual cost from the Initial state to n.

A h(n) = estimated cost from n to the next goal.

A f(n) = g(n) + h(n) , the estimated cost of the
cheapest solution through n.

A Let h*(n) be the actual cost of the optimal path
from n to the next goal.

A h is admissible if the following holds for all n:
h(n) ¢ h*(n)

A We require thatfor A*, h is admissible (the
straight -line distance is admissible in the

Euclidean Space).
38

Example: Path Planning for
Robots ina Grid -World

39

Deterministic Value lteration

A To compute the shortest path from
every state to one goal state, use

(deterministic) va
A Very similar to

A Such a cost distri
heuristic for A*.

ue iteration.

oution Is the optimal

Dijkstra s Algorithm.

40

Typical Assumption in Robotics
for A* Path Planning

A The robot Is assumed to be localized.

A The robot computes its path based on
an occupancy grid.

A The correct motion commands are
executed.

Is this always true?

41

Problems

A What if the robot is slightly delocalized?

A Moving on the shortest path guides
often the robot on a trajectory close
to obstacles.

A Trajectory aligned to the grid structure.

42

Convolution of the Grid Map

A Convolution blurs the map.

A Obstacles are assumed to be bigger
than In reality.

A Perform an A* search in such a
convolved map.

A Robot Increases distance to obstacles
and movesona short path !

43

Example: Map Convolution

A 1-d environment, cellsc ,, &5, ¢

ohne FaItuhg " nach zweifacher Faltuhg
1 1
08 1 0.8 -
§ 0.6 § 0.6
Q o r b Q .0 r
S S
“ 04t - “ 04l
0.2 - 0.2 |
0 : : : : ' : 0 : : : : : :
0 1 2 3 4 5 0 1 2 3 4 5
Feld x Feld x

A Cells before and after 2 convolution runs.

Convolution

A Consider an occupancy map. Than the
convolution is defined as:

1 1 1
P(occy;y) = — - P(ocex;_1,y) + = - P(occa,y) + — - P(occx;, {,y)
4 2 4 +

2 1
P(occrgy,y) = 3 P(occzg,y) + 3 P(ocezy y)

1 2
P(OCan_l,y) — 5 . P(OCan_Q,y) + 5) P(Occxn—lay)

A This i1s done for each row and each
column of the map.

A Gaussian blur

45

A* In Convolved Maps

A The costs are a product of path length
and occupancy probability of the cells.

A Cells with higher probability (e.g.,
caused by convolution) are avoided
by the robot.

A Thus, it keeps distance to obstacles.

A This technique is fast and quite reliable .

46

5D -Planning 1 an Alternative to
the Two -layered Architecture

A Plansinthefull< x , y , &> -gonfiBuration
space using A .
C Considers the robot's kinematic constraints .

A Generates a sequence of steering
commands to reach the goal location.

A Maximizes trade -off between driving time
and distance to obstacles.

47

The Search Space (1)

A What Is a state In this space?
<X, Yy, e3=, drrent position and
speed of the robot

A How does a state transition look like?
<X ,Y1, Vi1, R> — X 5.y, 8V, B>
with motion command (v ,, R)and

V-V, < a, | R-R,|< ag. Pose of the
Robot Is a result of the motion equations.

48

The Search Space (2)

ldea: search In the discretized
<X, Y, €>-spacB.

Problem: the search space Is too huge to
be explored within the time constraints
(5+ Hz for online motion plannig).

Solution: restrict the full search space.

49

The Main Steps of Our Algorithm

1. Update (static) grid map based on
sensory input.

2. Use A” tofind a trajectory in the <x,y>
space using the updated grid map.

3. Determine arestricted 5d -configuration
space based on step 2.

4. Find a trajectory by planning in the

restricted <gpacg., €, VvV,

50

Updating the Grid Map

A The environment is represented as
a 2d -occupency grid map.

A Convolution of the map increases
security distance.

A Detected obstacles are added.
A Cells discovered free are cleared.

51

Find a Path in the 2d - Space

A Use A™ to search for the optimal path in the
2d -grid map.

A Use heuristic based on a deterministic
value iteration within the static map.

current location

52

Restricting the Search Space

Assumption: the projection of the 5d -path
onto the < X,y > -space lies close to the
optimal 2d - path.

Therefore: construct a restricted search
space (channel) based on the 2d -path.

53

Space Restriction

A Resulting search space =
<X, Yy, @, v, R=ehawel.t h (x

A Choose a sub -goal lying on the 2d -path
within the channel.

subgoal

channel
i

current location

o4

Find a Path in the 5d - Space

A Use A" in the restricted 5d -space to find a
seguence of steering commands to reach
the sub -goal.

A To estimate cell costs: perform a
deterministic 2d -value iteration within the
channel.

55

Examples

current location

56

Timeouts

A Steering a robot online requires to set a
new steering command every .25 Secs.

C Abort search after .25 secs.

How to find an admissible steering
command?

57

Alternative Steering Command

A Previous trajectory still admissible?
C OK

A If not, drive on the 2d -path or use
DWA to find new command.

58

Timeout Avoidance

-1 B

0.8 |

0.6

p(Timeout)

0.4 t

0.2t

0]

0 1 2 3 4 5 6 7 8 9 10
average cell costs on 2d-path

C Reduce the size of the channel if
the 2d -path has high cost.

59

Robot Albert Planning state

60

Comparison to the DWA (1)

A DWAs often have problems entering narrow
passages.

I.__H-..-—IJ.-_—I-—I'I—'II_\—'__-IL 1
; LI & E ! ; LI & - !
=:| “F ;E | =:| -
.1 . . Lo o 4

---"_"-I' . owm s LA 8]
; * ;

LE] L]
N ; H L
. =

L y - B 9

DWA planned path. 5D approach.

61

Comparison to the DWA (1)

A DWAs often have problems entering narrow
passages.

DWA planned path. 5D approach.

62

Comparison to the DWA (2)

time [secs]

140 + our technique, straight line path === -

DWA, straight line path ===
120 + our technique, entering a room E===== _

DWA, entering a room ezzz=z==
100 .
80 .
60 [.
40 -
o \ |

L

The presented approach results in
significantly faster motion when
driving through narrow passages!

63

Comparison to the Optimum

175

| driving time using different channel sizes

170 +

<10%

-
(8)]
n

-
(@)
o

driving time [secs]

-
o
n

150

145

w=70,1=150 w=90,=250 w=110,I=500 Optimum

Channel: with length=5m, width=1.1m
Resulting actions are close to the optimal solution.

64

Rapidly Exploring Random Trees

A ldea: aggressively probe and explore the
C-space by expanding incrementally
from an initial configuration do

A The explored territory is marked by a
tree rooted at o

45 2345
iterations iterations

65

