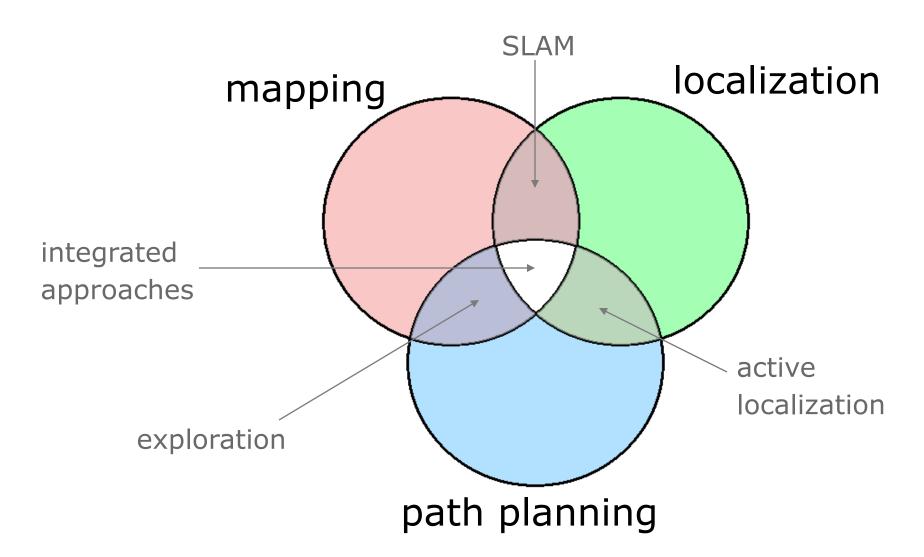
Introduction to Mobile Robotics

Information Driven Exploration

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Tasks of Mobile Robots



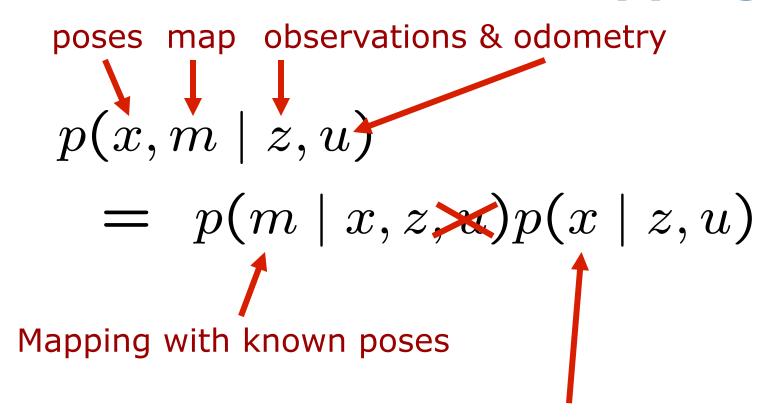
Exploration and SLAM

- SLAM is typically passive, because it consumes incoming sensor data
- Exploration actively guides the robot to cover the environment with its sensors
- Exploration in combination with SLAM:
 Acting under pose and map uncertainty
- Uncertainty should/needs to be taken into account when selecting an action

Mapping with Rao-Blackwellized Particle Filter (Brief Summary)

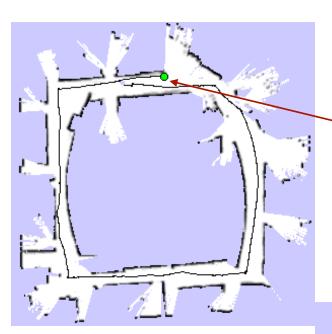
- Each particle represents a possible trajectory of the robot
- Each particle
 - maintains its own map and
 - updates it upon "mapping with known poses"
- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map

Factorization Underlying Rao-Blackwellized Mapping

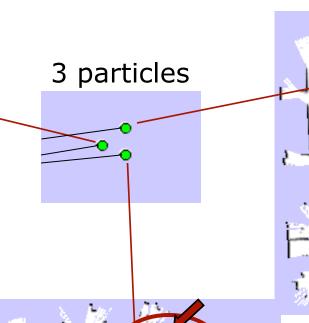


Particle filter representing trajectory hypotheses

Example: Particle Filter for Mapping



map of particle 1

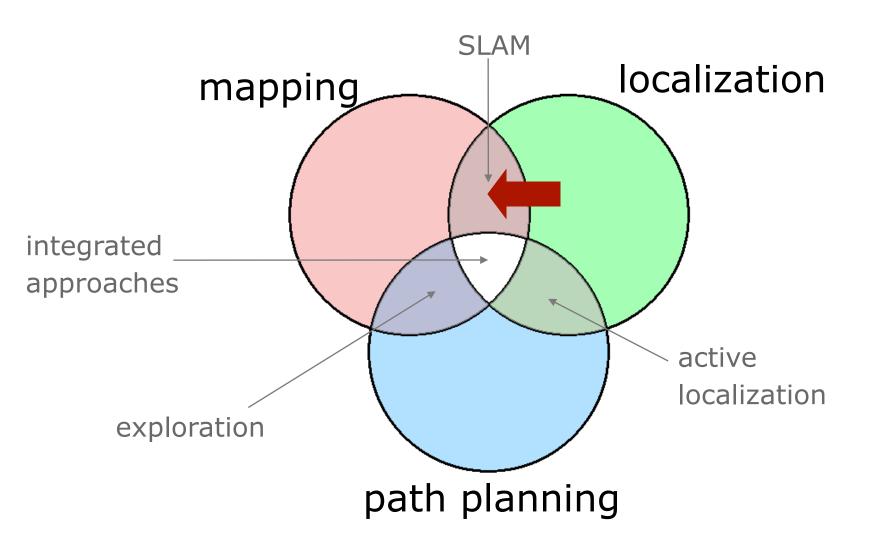


map of particle 2

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.75 km (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

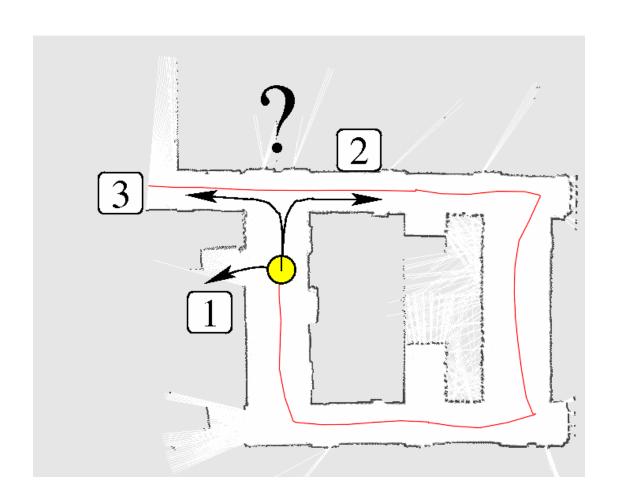
Combining Exploration and SLAM



Exploration

- SLAM approaches seen so far are purely passive
- By reasoning about control, the mapping process can be made much more effective
- Question: Where to move next?

Where to Move Next?

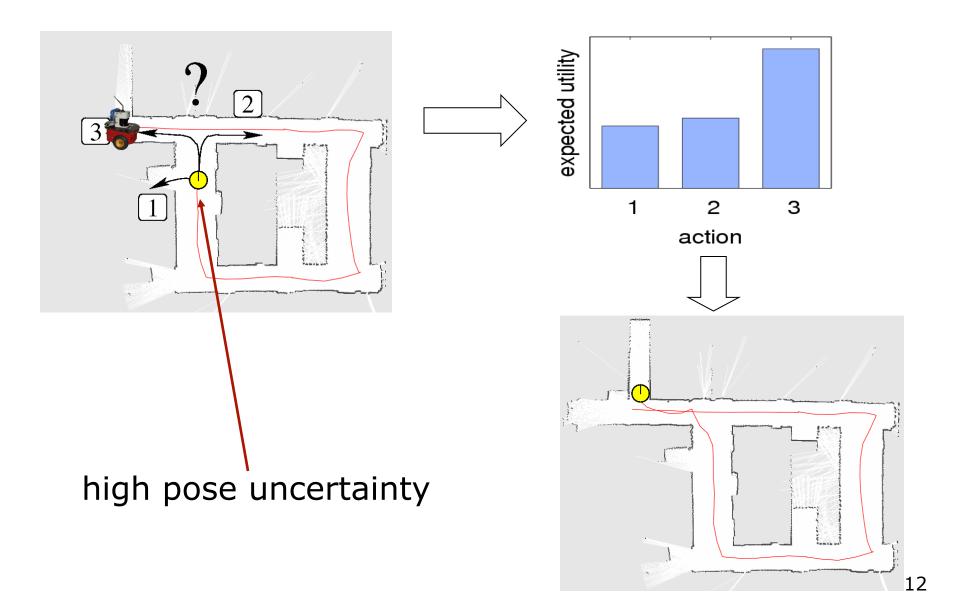


Decision-Theoretic Approach

- Learn the map using a Rao-Blackwellized particle filter
- Consider a set of potential actions
- Apply an exploration approach that minimizes the overall uncertainty

Utility = uncertainty reduction - cost

Example



The Uncertainty of a Posterior

 Entropy is a general measure for the uncertainty of a posterior

$$H(X) = -\int_{X} p(X = x) \log p(X = x) dx$$
$$= E_X[-\log(p(X))]$$

Conditional Entropy

$$H(X \mid Y) = \int_{\mathcal{Y}} p(Y = y)H(X \mid Y = y) dy$$

Mutual Information

 Expected Information Gain or Mutual Information = Expected Uncertainty Reduction

$$I(X;Y) = H(X) - H(X \mid Y)$$

$$I(X;Y) = H(Y) - H(Y \mid X)$$

$$I(X;Y \mid z = c_k) = H(X \mid z = c_k) - H(X \mid Y, z = c_k)$$

$$I(X;Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z)$$

Entropy Computation

$$H(X,Y) = E_{X,Y}[-\log p(X,Y)]$$

$$= E_{X,Y}[-\log(p(X) p(Y | X))]$$

$$= E_{X,Y}[-\log p(X)] + E_{X,Y}[-\log p(Y | X)]$$

$$= H(X) + \int_{x,y} -p(x,y) \log p(y | x) dx dx$$

$$= H(X) + \int_{x,y} -p(y | x) p(x) \log p(y | x) dx dy$$

$$= H(X) + \int_{x} px \int_{y} -p(y | x) \log p(y | y) dy dx$$

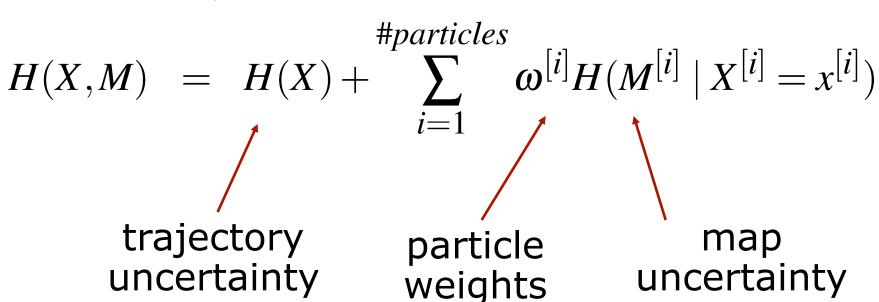
$$= H(X) + \int_{x} px \int_{y} -p(y | x) \log p(y | y) dy dx$$

$$= H(X) + \int_{x} px \int_{y} -p(y | x) \log p(y | y) dy dx$$

The Uncertainty of the Robot

• The uncertainty of the RBPF:

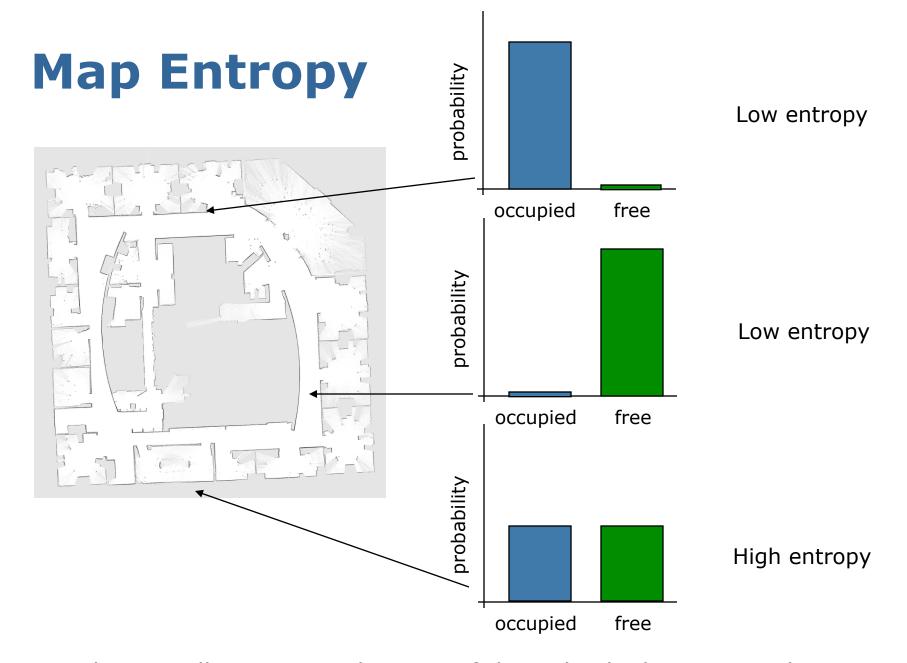
$$H(X,M) = H(X) + \int_X p(x)H(M \mid X = x) dx$$



Computing the Entropy of the Map Posterior

Occupancy Grid map *m*:

$$H(M) = -\sum_{c \in M} p(c) \log p(c) + (1-p(c)) \log (1-p(c))$$
 map uncertainty grid cells probability that the cell is occupied



The overall entropy is the sum of the individual entropy values

Computing the Entropy of the Trajectory Posterior

1. High-dimensional Gaussian

$$H(\mathscr{G}(\mu, \Sigma)) = \log((2\pi e)^{(n/2)}|\Sigma|)$$

reduced rank for sparse particle sets

2. Grid-based approximation

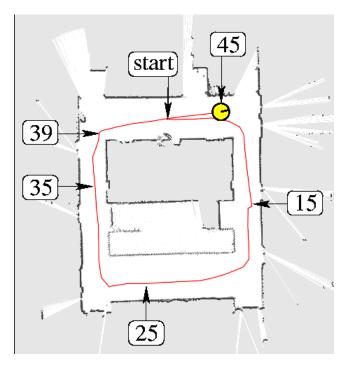
$$H(X) \sim const.$$

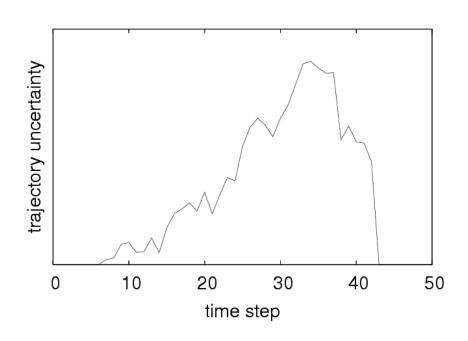
for sparse particle clouds

Approximation of the Trajectory Posterior Entropy

Average pose entropy over time:

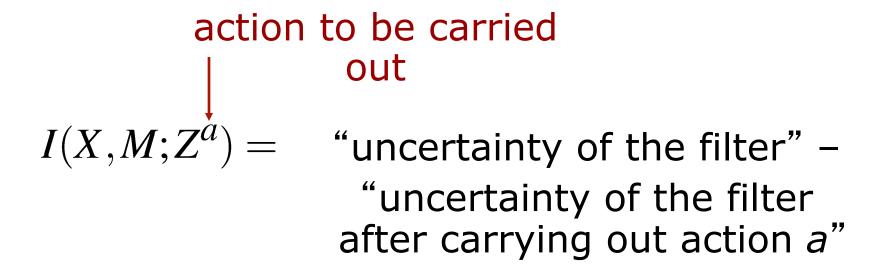
$$H(X_{1:t} \mid d) \approx \frac{1}{t} \sum_{t'=1}^{t} H(X_{t'} \mid d)$$





Mutual Information

 The mutual information I is given by the reduction of entropy in the belief



Integrating Over Observations

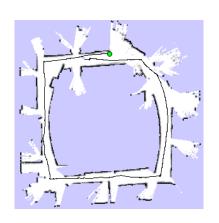
 Computing the mutual information requires to integrate over potential observations

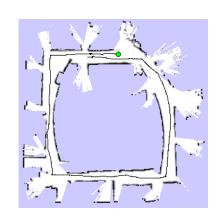
$$I(X,M;Z^a) = H(X,M) - H(X,M \mid Z^a)$$
 $H(X,M \mid Z^a) = \int_{\mathcal{Z}} p(z \mid a) H(X,M \mid Z^a = z) \ dz$
potential observation

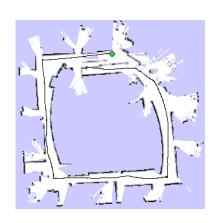
sequences

Integral Approximation

 The particle filter represents a posterior about possible maps







map of particle 1 map of particle 2

map of particle 3

Integral Approximation

- The particle filter represents a posterior about possible maps
- Simulate laser measurements in the maps of the particles

$$H(X, M | Z^a) = \sum_{z} p(z | a) H(X, M | Z^a = z)$$

measurement sequences

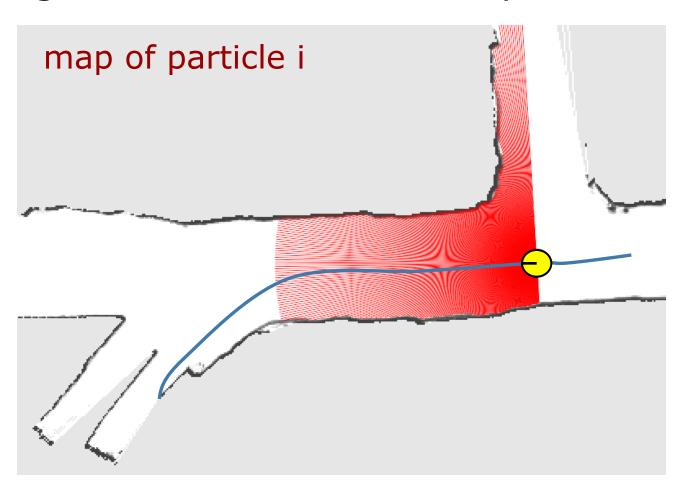
simulated in the maps

likelihood (particle weight)

$$= \sum_{i} \omega^{[i]} H(X, M \mid Z^{a} = z_{sim_{a}}^{[i]})$$

Simulating Observations

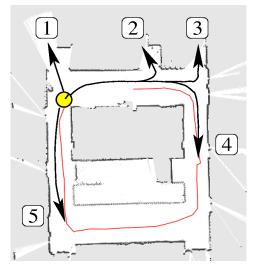
 Ray-casting in the map of each particle to generate observation sequences



The Utility

- We take into account the cost of an action: mutual information → utility U
- Select the action with the highest utility

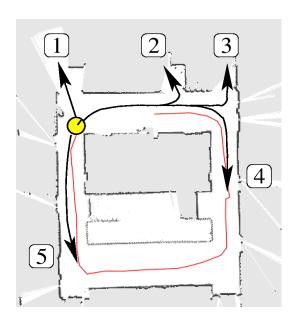
$$a^* = \underset{a}{\operatorname{argmax}} I(X, M; Z^a) - cost(a)$$



Focusing on Specific Actions

To efficiently sample actions we consider

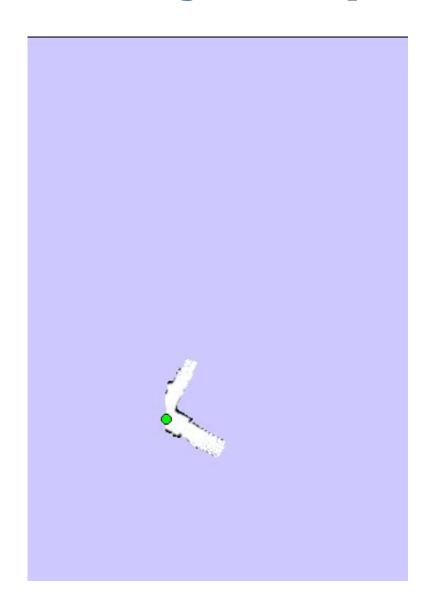
- exploratory actions (1-3)
- loop closing actions (4) and
- place revisiting actions (5)



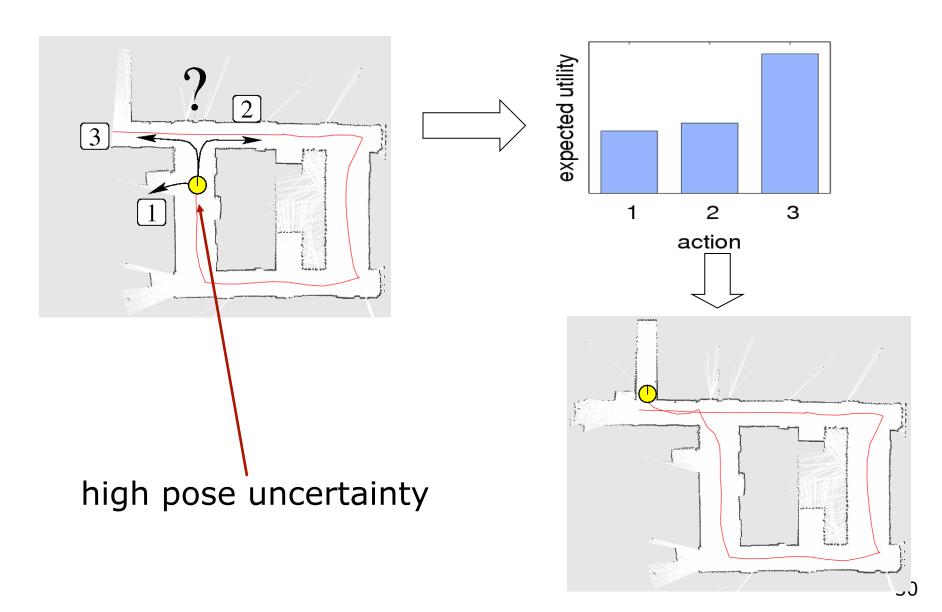
Dual Representation for Loop Detection

- Trajectory graph ("topological map") stores the path traversed by the robot
- Occupancy grid map represents the space covered by the sensors
- Loops correspond to long paths in the trajectory graph and short paths in the grid map

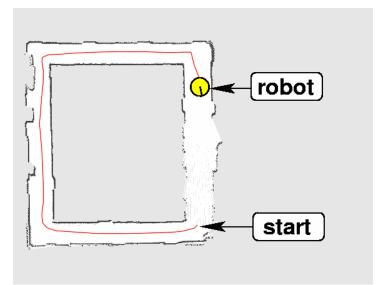
Example: Trajectory Graph

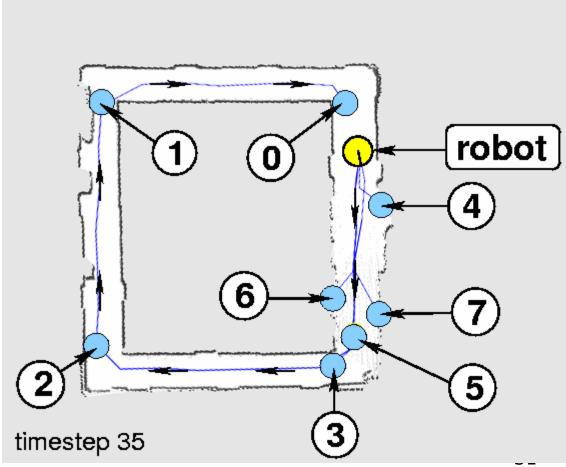


Application Example

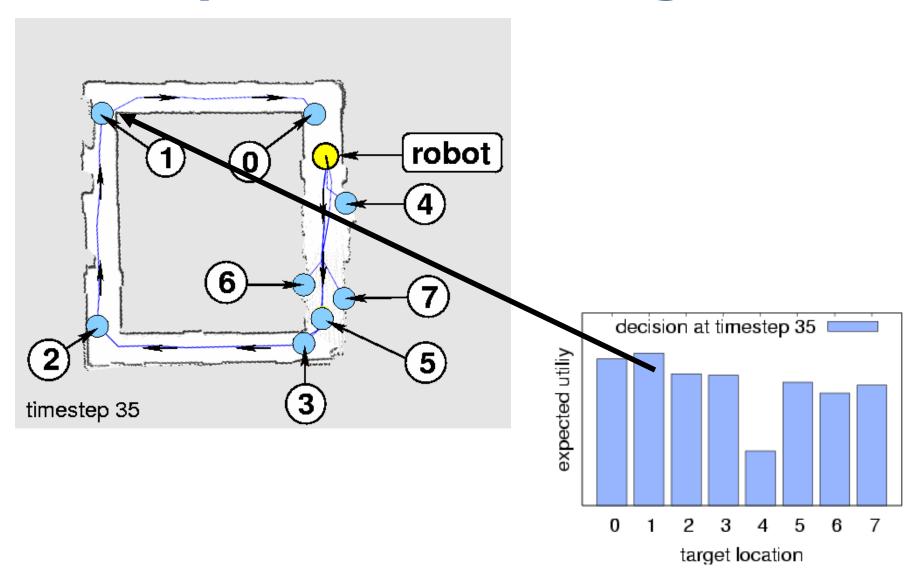


Example: Possible Targets

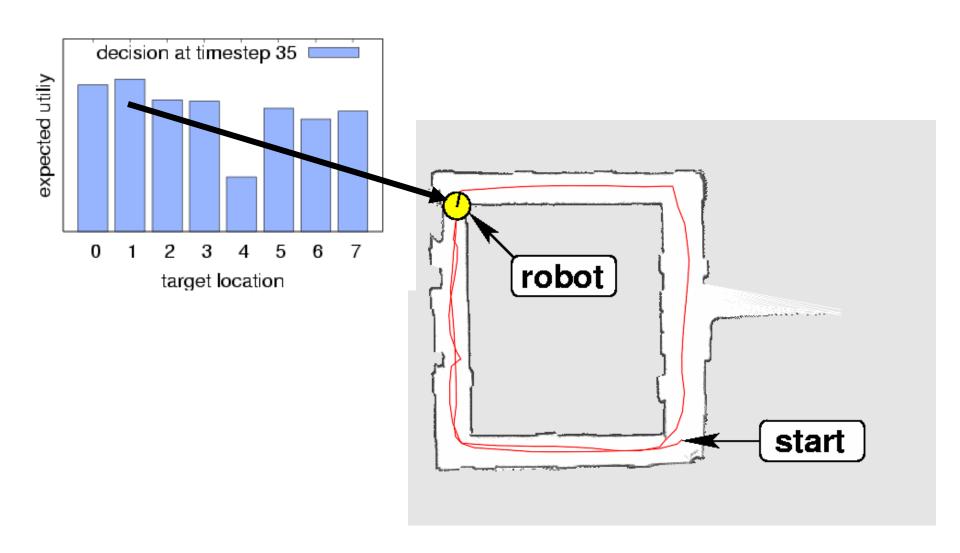




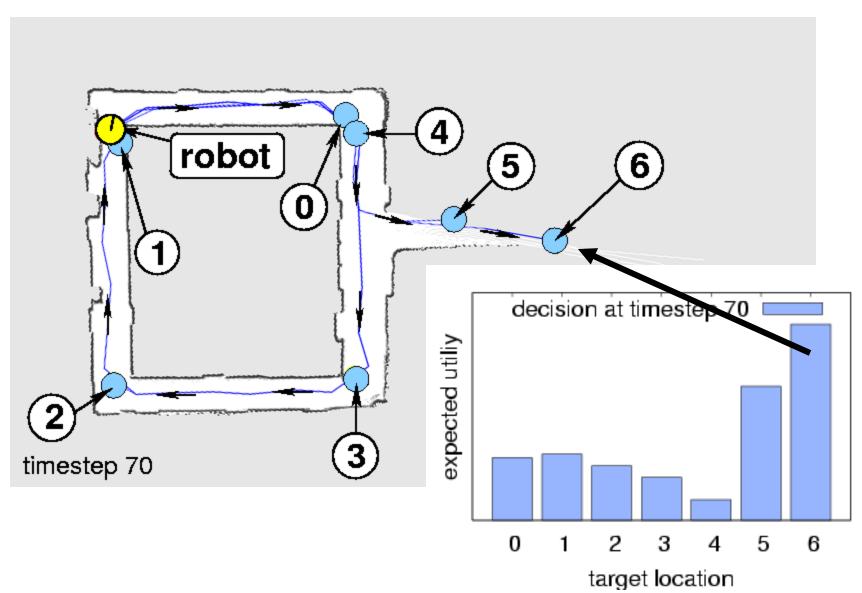
Example: Evaluate Targets



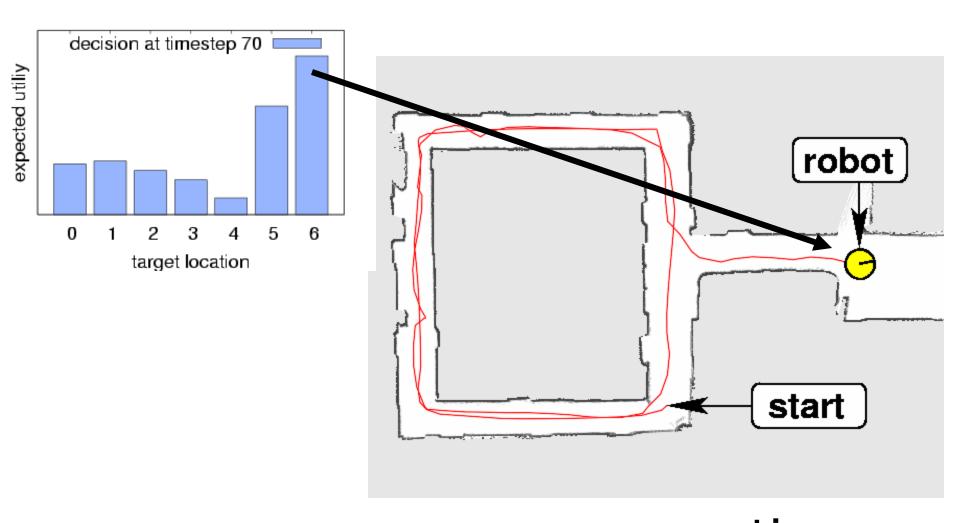
Example: Move Robot to Target



Example: Evaluate Targets

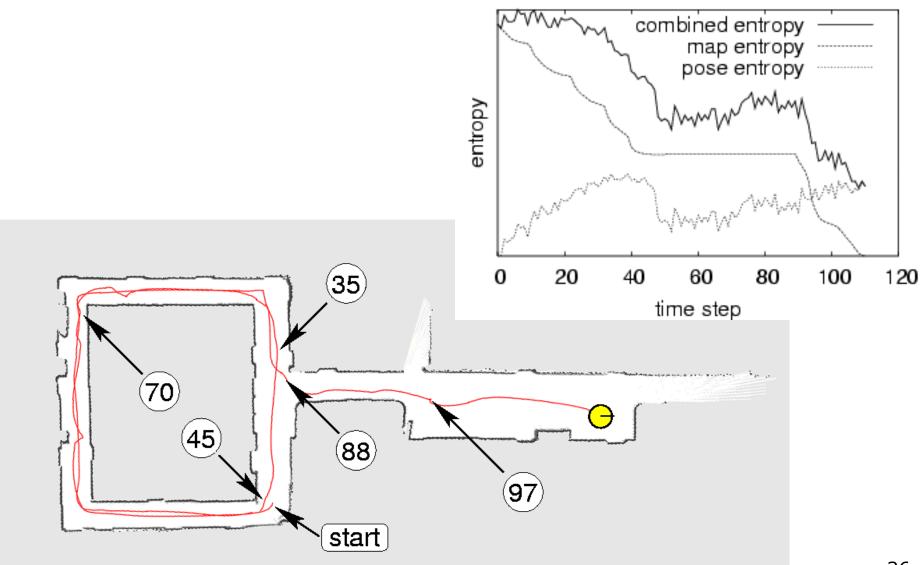


Example: Move Robot



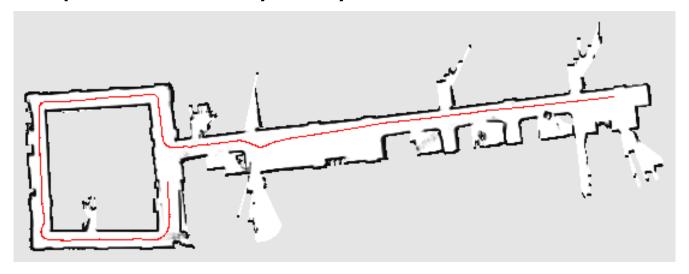
... continue .35

Example: Entropy Evolution

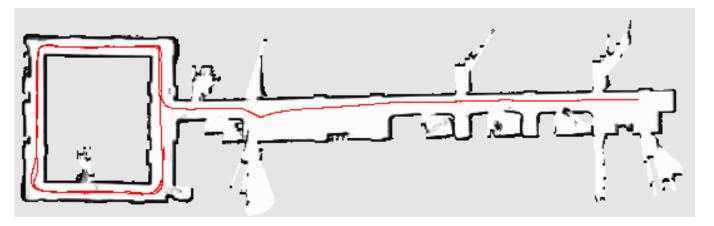


Comparison

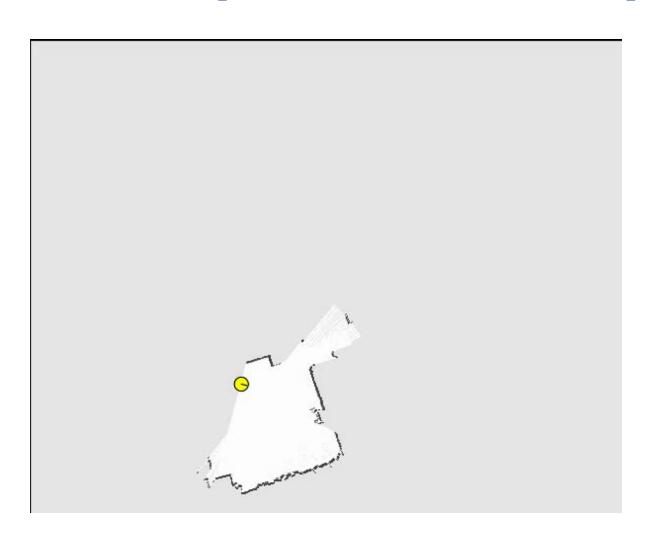
Map uncertainty only:



After loop closing action:



Real Exploration Example



Selected target location

Corridor Exploration

- The decision-theoretic approach leads to intuitive behaviors: "re-localize before getting lost"
- Some animals show a similar behavior (dogs marooned in the tundra of north Russia)

Summary

- A decision-theoretic approach to exploration in the context of RBPF-SLAM
- The approach utilizes the factorization of the Rao-Blackwellization to efficiently calculate the expected information gain
- Reasons about measurements obtained along the path of the robot
- Considers a reduced action set consisting of exploration, loop-closing, and place-revisiting actions
- Experimental results demonstrate the usefulness of the overall approach