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Tasks of Mobile Robots 
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path planning 

localization 
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active 
localization 

exploration 

integrated 
approaches 
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Exploration and SLAM 

§  SLAM is typically passive, because it 
consumes incoming sensor data 

§  Exploration actively guides the robot to 
cover the environment with its sensors 

§  Exploration in combination with SLAM: 
Acting under pose and map uncertainty 

§  Uncertainty should/needs to be taken into 
account when selecting an action 
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Mapping with Rao-Blackwellized  
Particle Filter (Brief Summary) 

§  Each particle represents a possible 
trajectory of the robot 

§  Each particle  
§ maintains its own map and  
§  updates it upon “mapping with known 

poses” 
§  Each particle survives with a probability 

proportional to the likelihood of the 
observations relative to its own map 

 



5 

Factorization Underlying  
Rao-Blackwellized Mapping 

Particle filter representing trajectory hypotheses 

Mapping with known poses 

poses map observations & odometry 
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Example: Particle Filter for Mapping 

map of particle 1 map of particle 2 

map of particle 3 

3 particles 
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Outdoor Campus Map 
§  30 particles 
§  250x250m2 

§  1.75 km 
(odometry) 

§  20cm resolution 
during scan 
matching 

§  30cm resolution 
in final map 

§  30 particles 
§  250x250m2 

§  1.75 km 
(odometry) 

§  20cm resolution 
during scan 
matching 

§  30cm resolution 
in final map 
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exploration 

integrated 
approaches 

Combining Exploration and SLAM 
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§  SLAM approaches seen so far are  
purely passive 

§  By reasoning about control, the 
mapping process can be made  
much more effective 

§  Question: Where to move next? 
 

Exploration 
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Where to Move Next? 
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Decision-Theoretic Approach 

§  Learn the map using a Rao-Blackwellized 
particle filter 

§  Consider a set of potential actions 

§  Apply an exploration approach that 
minimizes the overall uncertainty 

  Utility = uncertainty reduction - cost 
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Example 

high pose uncertainty 



The Uncertainty of a Posterior 
§  Entropy is a general measure for the 

uncertainty of a posterior 

§  Conditional Entropy 
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Mutual Information 
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§  Expected Information Gain or Mutual 
Information = Expected Uncertainty 
Reduction 



Entropy Computation 
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The Uncertainty of the Robot 
§  The uncertainty of the RBPF: 

 

trajectory  
uncertainty 

map  
uncertainty 

particle 
weights 



Computing the Entropy of the 
Map Posterior  
Occupancy Grid map m: 
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grid cells map  
uncertainty probability that the 

cell is occupied 
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Map Entropy 
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Low entropy 

Low entropy 

High entropy 

The overall entropy is the sum of the individual entropy values 
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Computing the Entropy of the 
Trajectory Posterior  

1.  High-dimensional Gaussian 
 
 
reduced rank for sparse particle sets 
 
 

2.  Grid-based approximation 
 
 
for sparse particle clouds 
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Approximation of the 
Trajectory Posterior Entropy  

Average pose entropy over time: 



Mutual Information 
§  The mutual information I is given by the 

reduction of entropy in the belief 
 

action to be carried 
out 

“uncertainty of the filter” – 
  

“uncertainty of the filter 
 after carrying out action a” 



Integrating Over Observations 
§  Computing the mutual information requires 

to integrate over potential observations 
 

potential observation  
sequences 



Integral Approximation 

§  The particle filter represents a posterior 
about possible maps 

map of particle 1 map of particle 3 map of particle 2 

… 



Integral Approximation 

§  The particle filter represents a posterior 
about possible maps 

§  Simulate laser measurements in the maps 
of the particles 

measurement sequences 
simulated in the maps 

likelihood  
(particle weight) 



Simulating Observations 

§  Ray-casting in the map of each particle 
to generate observation sequences 

map of particle i 



The Utility 

§  We take into account the cost of an action: 
mutual information      utility U 

§  Select the action with the highest utility 
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Focusing on Specific Actions 
To efficiently sample actions we consider 

§  exploratory actions (1-3) 
§  loop closing actions (4) and 
§  place revisiting actions (5) 
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Dual Representation  
for Loop Detection 

§  Trajectory graph (“topological map”) 
stores the path traversed by the robot 

§  Occupancy grid map represents the space 
covered by the sensors 

§  Loops correspond to long paths in the 
trajectory graph and short paths in the grid 
map 
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Example: Trajectory Graph 
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Application Example 

high pose uncertainty 
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Example: Possible Targets 
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Example: Evaluate Targets 
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Example: Move Robot to Target 
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Example: Evaluate Targets 
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Example: Move Robot 

… continue … 
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Example: Entropy Evolution 
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Comparison 

After loop closing action: 

 

Map uncertainty only: 
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Real Exploration Example 

Selected 
target 
location 
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Corridor Exploration 

§  The decision-theoretic approach leads to intuitive 
behaviors: “re-localize before getting lost” 

§  Some animals show a similar behavior  
(dogs marooned in the tundra of north Russia)  
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Summary 
§  A decision-theoretic approach to exploration in 

the context of RBPF-SLAM 

§  The approach utilizes the factorization of the 
Rao-Blackwellization to efficiently calculate the 
expected information gain 

§  Reasons about measurements obtained along 
the path of the robot 

§  Considers a reduced action set consisting of 
exploration, loop-closing, and place-revisiting 
actions 

§  Experimental results demonstrate the usefulness 
of the overall approach 


