I ntroduction to Mobile Robotics

Compact Course on Linear Algebra

Wolfram Burgard, Maren Bennewitz,
Diego Tipaldi, Luciano Spinello

Vectors

- Arrays of numbers
- Vectors represent a point in a n dimensional space

Vectors: Scalar Product

- Scalar-Vector Product $k \mathbf{a}$
- Changes the length of the vector, but not its direction

Vectors: Sum

- Sum of vectors (is commutative)

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)+\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)+\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

- Can be visualized as "chaining" the vectors.

Vectors: Dot Product

- Inner product of vectors (is a scalar)

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}=\sum_{i} a_{i} b_{i}
$$

- If one of the two vectors, e.g. a, has $\|\mathbf{a}\|=1$ the inner product a $\cdot \mathbf{b}$ returns the length of the projection of b along the direction of a

- If $\mathbf{a} \cdot \mathrm{b}=0$, the two vectors are orthogonal

Vectors: Linear (In) Dependence

- A vector \mathbf{b} is linearly dependent from $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ if $\mathbf{b}=\sum_{i} k_{i} \mathbf{a}_{i}$
- In other words, if \mathbf{b}^{i} can be obtained by summing up the a_{i} properly scaled
- If there exist no $\left\{k_{i}\right\}$ such that $\mathbf{b}=\sum_{i} k_{i} \mathbf{a}_{i}$ then \mathbf{b} is independent from $\left\{\mathbf{a}_{i}\right\}$

Vectors: Linear (In) Dependence

- A vector \mathbf{b} is linearly dependent from $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ if $\mathbf{b}=\sum_{i} k_{i} \mathbf{a}_{i}$
- In other words, if \mathbf{b}^{i} can be obtained by summing up the a_{i} properly scaled
- If there exist no $\left\{k_{i}\right\}$ such that $\mathbf{b}=\sum_{i} k_{i} \mathbf{a}_{i}$ then \mathbf{b} is independent from $\left\{\mathbf{a}_{i}\right\}$

Matrices

- A matrix is written as a table of values

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right) \quad \begin{gathered}
A: \underset{\substack{\uparrow \\
\uparrow \\
\text { rows columns }}}{ } \quad \underset{c}{m} 10
\end{gathered}
$$

- $1^{\text {st }}$ index refers to the row
- $\mathbf{2}^{\text {nd }}$ index refers to the column
- Note: a d-dimensional vector is equivalent to a dx1 matrix

Matrices as Collections of Vectors

- Column vectors

$$
\mathbf{A}=\left(\begin{array}{cccc}
\mathbf{a}_{* 1} & \mathbf{a}_{* 2} & \cdots & \mathbf{a}_{* m}
\end{array}\right)
$$

Matrices as Collections of Vectors

- Row vectors

$$
\mathbf{A}=\left(\begin{array}{cccc}
\begin{array}{|ccc|}
a_{11} & a_{12} & \cdots
\end{array} a_{1 m} \\
\hline a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
\mathbf{a}_{1 *}^{T} \\
\mathbf{a}_{2 *}^{T} \\
\vdots \\
\mathbf{a}_{n *}^{T}
\end{array}\right)
$$

I mportant Matrices Operations

- Multiplication by a scalar
- Sum (commutative, associative)
- Multiplication by a vector
- Product (not commutative)
- Inversion (square, full rank)
- Transposition

Scalar Multiplication \& Sum

- In the scalar multiplication, every element of the vector or matrix is multiplied with the scalar
- The sum of two vectors is a vector consisting of the pair-wise sums of the individual entries
- The sum of two matrices is a matrix consisting of the pair-wise sums of the individual entries

Matrix Vector Product

- The $i^{\text {th }}$ component of $\mathbf{A b}$ is the dot product

$$
\mathbf{a}_{i *}^{T} \cdot \mathbf{b}
$$

- The vector $\mathbf{A b}$ is linearly dependent from the column vectors $\left\{\mathbf{a}_{* i}\right\}$ with coefficients $\left\{b_{i}\right\}$

$$
\mathbf{A b}=\left(\begin{array}{c}
\mathbf{a}_{1 *}^{T} \\
\mathbf{a}_{2 *}^{T} \\
\vdots \\
\mathbf{a}_{n *}^{T}
\end{array}\right) \cdot \mathbf{b}=\left(\begin{array}{c}
\mathbf{a}_{1 *}^{T} \cdot \mathbf{b} \\
\mathbf{a}_{2 *}^{T} \cdot \mathbf{b} \\
\vdots \\
\mathbf{a}_{n *}^{T} \cdot \mathbf{b} \\
\uparrow \\
\text { row vectors }
\end{array}\right)=\sum_{k} \mathbf{a}_{* k} b_{k}
$$

Matrix Vector Product

- If the column vectors of A represent a reference system, the product $\mathbf{A b}$ computes the global transformation of the vector \mathbf{b} according to $\left\{\mathbf{a}_{* i}\right\}$
column vectors

Matrix Matrix Product

- Can be defined through
- the dot product of row and column vectors
- the linear combination of the columns of \mathbf{A} scaled by the coefficients of the columns of \mathbf{B}
$\mathrm{C}=\mathrm{AB}$

$$
\begin{aligned}
& =\left(\begin{array}{cccc}
\mathbf{a}_{1 *}^{T} \cdot \mathbf{b}_{* 1} & \mathbf{a}_{1 *}^{T} \cdot \mathbf{b}_{* 2} & \cdots & \mathbf{a}_{1 *}^{T} \cdot \mathbf{b}_{* m} \\
\mathbf{a}_{2 *}^{T} \cdot \mathbf{b}_{* 1} & \mathbf{a}_{2 *}^{T} \cdot \mathbf{b}_{* 2} & \cdots & \mathbf{a}_{2 *}^{T} \cdot \mathbf{b}_{* m} \\
\vdots & & & \\
\mathbf{a}_{n *}^{T} \cdot \mathbf{b}_{* 1} & \mathbf{a}_{n *}^{T} \cdot \mathbf{b}_{* 2} & \cdots & \mathbf{a}_{n *}^{T} \cdot \mathbf{b}_{* m}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\mathbf{A} \mathbf{b}_{* 1} & \mathbf{A} \mathbf{b}_{* 2} & \ldots \mathbf{A} \mathbf{b}_{* m}
\end{array}\right)
\end{aligned}
$$

Matrix Matrix Product

- If we consider the second interpretation, we see that the columns of \mathbf{C} are the "transformations" of the columns of \mathbf{B} through A
- All the interpretations made for the matrix vector product hold

$$
\begin{aligned}
\mathbf{C} & =\mathbf{A B} \\
& =\left(\begin{array}{llll}
\mathbf{A b}_{* 1} & \mathbf{A b}_{* 2} & \ldots \mathbf{A b}_{* m}
\end{array}\right) \\
\mathbf{c}_{* i} & =\mathbf{A b}_{* i}
\end{aligned}
$$

Rank

- Maximum number of linearly independent rows (columns)
- Dimension of the image of the transformation $f(\mathbf{x})=A \mathbf{x}$
- When A is $m \times n$ we have
- $\operatorname{rank}(A) \geq 0$ and the equality holds iff A is the null matrix
- $\operatorname{rank}(A) \leq \min (m, n)$
- Computation of the rank is done by
- Gaussian elimination on the matrix
- Counting the number of non-zero rows

I nverse

$\mathrm{AB}=\mathrm{I}$

- If A is a square matrix of full rank, then there is a unique matrix $\mathbf{B}=\mathbf{A}^{\mathbf{- 1}}$ such that $\mathbf{A B}=\mathbf{I}$ holds
- The $i^{\text {th }}$ row of \mathbf{A} is and the $j^{\text {th }}$ column of $\mathbf{A}^{\mathbf{- 1}}$ are:
- orthogonal (if $\mathrm{i} \neq \mathrm{j}$)
- or their dot product is 1 ($\mathrm{if} \mathrm{i}=\mathrm{j}$)

Matrix I nversion

$\mathrm{AB}=\mathrm{I}$

- The $\mathrm{ith}^{\text {th }}$ column of \mathbf{A}^{-1} can be found by solving the following linear system:
$\mathbf{A} \mathbf{a}_{* i}^{-1}=\mathbf{i}_{* i} \stackrel{\begin{array}{c}\text { This is the tith column } \\ \text { of the identity matrix }\end{array}}{\text { Then }}$

Determinant (det)

- Only defined for square matrices
- The inverse of \mathbf{A} exists if and only if $\operatorname{det}(\mathbf{A}) \neq 0$
- For 2×2 matrices:

Let $\mathbf{A}=\left[a_{i j}\right]$ and $|\mathbf{A}|=\operatorname{det}(\mathbf{A})$, then

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}
$$

- For 3×3 matrices the Sarrus rule holds:

$$
\begin{aligned}
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{11}
\end{aligned}
$$

Determinant

- For general $n \times n$ matrices?

Let $\mathbf{A}_{i j}$ be the submatrix obtained from \mathbf{A} by deleting the i-th row and the j-th column

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & 0 \\
2 & 3 & 4 & -1 \\
-5 & 8 & 0 & 0 \\
0 & 4 & -2 & 0
\end{array}\right] \quad \square \quad \mathbf{A}_{32}=\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

Rewrite determinant for 3×3 matrices:

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{A}^{3 \times 3}\right)= & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{11} \\
= & a_{11} \cdot \operatorname{det}\left(\mathbf{A}_{11}\right)-a_{12} \cdot \operatorname{det}\left(\mathbf{A}_{12}\right)+a_{13} \cdot \operatorname{det}\left(\mathbf{A}_{13}\right)
\end{aligned}
$$

Determinant

- For general $n \times n$ matrices?

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =a_{11} \operatorname{det}\left(\mathbf{A}_{11}\right)-a_{12} \operatorname{det}\left(\mathbf{A}_{12}\right)+\ldots+(-1)^{1+n} a_{1 n} \operatorname{det}\left(\mathbf{A}_{1 n}\right) \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(\mathbf{A}_{1 j}\right)
\end{aligned}
$$

Let $\mathbf{C}_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)$ be the (i,j)-cofactor, then

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =a_{11} \mathbf{C}_{11}+a_{12} \mathbf{C}_{12}+\ldots+a_{1 n} \mathbf{C}_{1 n} \\
& =\sum_{j=1}^{n} a_{1 j} \mathbf{C}_{1 j}
\end{aligned}
$$

This is called the cofactor expansion across the first row

Determinant

- Problem: Take a 25×25 matrix (which is considered small). The cofactor expansion method requires n ! multiplications. For $\mathrm{n}=25$, this is $1.5 \times 10^{\wedge} 25$ multiplications for which a today supercomputer would take 500,000 years.
- There are much faster methods, namely using Gauss elimination to bring the matrix into triangular form.

$$
\mathbf{A}=\left[\begin{array}{cccc}
d_{1} & * & * & * \\
0 & d_{2} & * & * \\
0 & 0 & d_{3} & *
\end{array}\right] \quad \operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} d_{i}
$$

Because for triangular matrices the determinant is the product of diagonal elements

Determinant: Properties

- Row operations (\mathbf{A} is still a $n \times n$ square matrix)
- If \mathbf{B} results from \mathbf{A} by interchanging two rows, then $\operatorname{det}(\mathbf{B})=-\operatorname{det}(\mathbf{A})$
- If \mathbf{B} results from \mathbf{A} by multiplying one row with a number c, then $\operatorname{det}(\mathbf{B})=c \cdot \operatorname{det}(\mathbf{A})$
- If \mathbf{B} results from \mathbf{A} by adding a multiple of one row to another row, then $\operatorname{det}(\mathbf{B})=\operatorname{det}(\mathbf{A})$
- Transpose: $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$
- Multiplication: $\operatorname{det}(\mathbf{A} \cdot \mathbf{B})=\operatorname{det}(\mathbf{A}) \cdot \operatorname{det}(\mathbf{B})$
- Does not apply to addition! $\operatorname{det}(\mathbf{A}+\mathbf{B}) \neq \operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$

Determinant: Applications

- Compute Eigenvalues:

Solve the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})=0$

- Area and Volume: \quad area $=|\operatorname{det}(\mathbf{A})|$

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \underbrace{(c a b)}_{\substack{\text { wace } \\
a t-b c}}
$$

$\mathbf{A}=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
$\left(r_{i}\right.$ is i-th row $)$

Orthonormal Matrix

- A matrix Q is orthonormal iff its column (row) vectors represent an orthonormal basis

$$
q_{* i}^{T} \cdot q_{* j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}, \forall i, j\right.
$$

- As linear transformation, it is norm preserving
- Some properties:
- The transpose is the inverse $Q Q^{T}=Q^{T} Q=I$
- Determinant has unity norm (§ 1)

$$
1=\operatorname{det}(I)=\operatorname{det}\left(Q^{T} Q\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{T}\right)=\operatorname{det}(Q)^{2}
$$

Rotation Matrix

- A Rotation matrix is an orthonormal matrix with det $=+1$
- 2D Rotations $\quad R(\theta)=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
- 3D Rotations along the main axes

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

- I MPORTANT: Rotations are not commutative

$$
\begin{aligned}
& R_{x}\left(\frac{\pi}{4}\right) \cdot R_{y}\left(\frac{\pi}{4}\right)=\left[\begin{array}{ccc}
0.707 & 0 & -0.707 \\
-0.5 & 0.707 & -0.5 \\
0.5 & 0.707 & 0.5
\end{array}\right], R_{x}\left(\frac{\pi}{4}\right) \cdot R_{y}\left(\frac{\pi}{4}\right) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.414 \\
0.586 \\
3.414
\end{array}\right] \\
& R_{y}\left(\frac{\pi}{4}\right) \cdot R_{x}\left(\frac{\pi}{4}\right)=\left[\begin{array}{ccc}
0.707 & -0.5 & -0.5 \\
0 & 0.707 & -0.707 \\
0.707 & 0.5 & 0.5
\end{array}\right], R_{y}\left(\frac{\pi}{4}\right) \cdot R_{x}\left(\frac{\pi}{4}\right) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.793 \\
0.707 \\
3.207
\end{array}\right]
\end{aligned}
$$

Matrices to Represent Affine Transformations

- A general and easy way to describe a 3D transformation is via matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right) \mathbf{A}^{-1}=\left(\begin{array}{cc}
\mathbf{R}^{T} & -\mathbf{R}^{T} \mathbf{t} \\
0 & 1
\end{array}\right) \mathbf{p}=\binom{\mathbf{t}}{\mathbf{1}}
$$

- Takes naturally into account the noncommutativity of the transformations
- Homogeneous coordinates

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \mathbf{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \mathbf{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world

Positive Definite Matrix

- The analogous of positive number
- Definition $M>0$ iff $z^{T} M z>0 \forall z \neq 0$
- Example
- $M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}z_{1} & z_{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=z_{1}^{2}+z_{2}^{2}>0$

Positive Definite Matrix

- Properties
- Invertible, with positive definite inverse
- All real eigenvalues > 0
- Trace is > 0
- Cholesky decomposition $A=L L^{T}$

Linear Systems (1)

$$
A x=b
$$

I nterpretations:

- A set of linear equations
- A way to find the coordinates \mathbf{x} in the reference system of \mathbf{A} such that \mathbf{b} is the result of the transformation of $\mathbf{A x}$
- Solvable by Gaussian elimination

Linear Systems (2)

$\mathrm{Ax}=\mathrm{b}$

Notes:

- Many efficient solvers exit, e.g., conjugate gradients, sparse Cholesky decomposition
- One can obtain a reduced system ($\mathbf{A}^{\prime}, \mathbf{b}^{\prime}$) by considering the matrix (\mathbf{A}, \mathbf{b}) and suppressing all the rows which are linearly dependent
- Let $\mathbf{A}^{\prime} \mathbf{x}=\mathbf{b}^{\prime}$ the reduced system with $\mathbf{A}^{\prime}: n^{\prime} \mathbf{x m}$ and $\mathbf{b}^{\prime}: \mathrm{n}^{\prime} \times 1$ and rank $\mathbf{A}^{\prime}=\min \left(\mathrm{n}^{\prime}, \mathrm{m}\right)$ rows ${ }^{\boldsymbol{\lambda}} \quad{ }^{\prime}$ columns
- The system might be either over-constrained ($n^{\prime}>m$) or under-constrained ($n^{\prime}<m$)

Over-Constrained Systems

- "More (indep) equations than variables"
- An over-constrained system does not admit an exact solution
- However, if $\operatorname{rank} \mathbf{A}^{\prime}=\operatorname{cols}(\mathbf{A})$ one often computes a minimum norm solution

$$
\mathbf{x}=\underset{\mathbf{x}}{\operatorname{argmin}}\left\|\mathbf{A}^{\prime} \mathbf{x}-\mathbf{b}^{\prime}\right\|
$$

Note: rank = Maximum number of linearly independent rows/columns

Under-Constrained Systems

- "More variables than (indep) equations"
- The system is under-constrained if the number of linearly independent rows of \mathbf{A}^{\prime} is smaller than the dimension of \mathbf{b}^{\prime}
- An under-constrained system admits infinite solutions
- The degree of these infinite solutions is cols($\left.\mathbf{A}^{\prime}\right)-\operatorname{rows}\left(\mathbf{A}^{\prime}\right)$

J acobian Matrix

- It is a non-square matrix $n \times m$ in general
- Given a vector-valued function

$$
f(\mathrm{x})=\left[\begin{array}{c}
f_{1}(\mathrm{x}) \\
f_{2}(\mathrm{x}) \\
\vdots \\
f_{m}(\mathrm{x})
\end{array}\right]
$$

- Then, the J acobian matrix is defined as

$$
\mathbf{F}_{\mathbf{x}}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

J acobian Matrix

- It is the orientation of the tangent plane to the vector-valued function at a given point

- Generalizes the gradient of a scalar valued function

Further Reading

" A "quick and dirty" guide to matrices is the Matrix Cookbook available at: http://matrixcookbook.com

