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Vectors

= Arrays of numbers

= Vectors represent a point in a n dimensional
space

aq a2

(a1)

an ai



Vectors: Scalar Product

= Scalar-Vector Product ka
= Changes the length of the vector, but not

Its direction
/ka
ap

ai




Vectors: Sum

= Sum of vectors (iIs commutative)

a1 b1 b1 al
o N R o I O e
an, b’n, b'n an

= Can be visualized as “chaining” the vectors.




Vectors: Dot Product

= Inner product of vectors (is a scalar)
a-b=b-a=2aibi
)

= If one of the two vectors, e.g.a, has|lal| =1
the inner producta - breturns the length of
the projection of b along the direction of a

= [fa-b =20, the
two vectors are
orthogonal




Vectors: Linear (In)Dependence

= A vector b is linearly dependent from
{3178-27 .o 7a’n} If b= Zk@a@

= |n other words, Iif bi can be obtained by
summing up the a; properly scaled

= If there exist no {ki} such that b=> k;a;
then b is independent from {a;} ’




Vectors: Linear (In)Dependence
= A vector b is linearly dependent from
{3178-27 S 7a’n} |f b = Zk@a@

= |n other words, Iif bi can be obtained by
summing up the a; properly scaled

= If there exist no {k;} such that b =) k;a,
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/koag




Matrices

= A matrix i1s written as a table of values

(a11 a12 -+ aim )
a a « o+ o a
A= | Tl T2 2m A:inxm
: 0 1‘|
\ ani ano 0 Gnm ) rows columns

= 1St iIndex refers to the row
= 2nd index refers to the column

= Note: a d-dimensional vector Is equivalent
to a dx1 matrix



Matrices as Collections of
Vectors

= Column vectors

(a1 a0z o aum)
([a11] [a12] -+ |a1m] )
A = ||21]]a22) -+ la2m

\anl Anp2| * " anm}




Matrices as Collections of
Vectors

= Row vectors

T
(la11 @12 - aim =(a%*\
A — | (821 @22 --* A2m | A0k

\anl Ap2 - anm/} =\a£*




Important Matrices Operations

= Multiplication by a scalar

= Sum (commutative, associative)
= Multiplication by a vector

* Product (not commutative)

* Inversion (square, full rank)

= Transposition



Scalar Multiplication & Sum

= Int
of t

ne scalar multiplication, every element
ne vector or matrix is multiplied with the

sca
= The

ar
sum of two vectors Is a vector

consisting of the pair-wise sums of the
Individual entries

= The

sum of two matrices Is a matrix

consisting of the pair-wise sums of the
Individual entries



Matrix Vector Product

= The it component of Ab is the dot product

al . b

e

= The vector Ab is linearly dependent from
the column vectors {a.;} with coefficients {b;}

(af, )

Ab = a_2T*

 al,

/a{*b\
ag*-b

\ 2 b
T

row vectors

5

a*kbk

|

column vectors



Matrix Vector Product

= |If the column vectors of A represent a
reference system, the product Ab
computes the global transformation of the
vector b according to {a.;}

column vectors




Matrix Matrix Product

= Can be defined through
= the dot product of row and column vectors

= the linear combination of the columns of A
scaled by the coefficients of the columns of B

C = AB

T T T
— Ay b1 ADy b - Ay b.cm
\ ag* - byq ag* by - ag* + bam }

( Ab,; Ab,> ...Absn )

column vectors



Matrix Matrix Product

= |f we consider the second interpretation,
we see that the columns of C are the
“transformations” of the columns of B
through A

= All the interpretations made for the matrix
vector product hold

C AB

(Ab,; Ab,o ...Ab.n )
Ab,; [

Cxj

column vectors



Rank

= Maximum number of linearly independent rows (columns)
= Dimension of the image of the transformation f(x)= Ax

= When A is m x n we have
= rank(A) > 0 and the equality holds iff A is the null matrix
= rank(A) < min(m,n)

= Computation of the rank is done by
= Gaussian elimination on the matrix
= Counting the number of non-zero rows



INnverse

AB =1

= |If AIs a square matrix of full rank, then
there is a unigue matrix B=A-! such that
AB=I holds

= The it" row of A is and the jt column of A1
are:
= orthogonal (if 1 =])
= or their dot productis 1 (if i =)



Matrix Inversion
AB =1

= The it column of A-1 can be found by
solving the following linear system:

| o
.  — . «—This is the it column
Aa xi — lxg

of the identity matrix



Determinant (det)

= Only defined for square matrices
= The inverse of A exists if and only if det(A) # 0
= For 2 x 2 matrices:

Let A = [a;;] and |A| = det(A), then

ailr  ai2
a1 a22

— aq1 - a22 — a12 - azi

= For3 x 3 matrices the Sarrus rule holds:

aii, @12, 413 |
a1 G2 G23 | = Q11022033 + 412023031 + 413021032

—11023032 — 012021033 — 013022011



Determinant

= For general n x n matrices?

Let A;; be the submatrix obtained from A
by deleting the i-¢A row and the j-tA column

1 2 5 0 ' 0
2 3 4 -1

Az = =

-5'8 0 0 - - (2)_42 01
0 4 -2 0 |

Rewrite determinant for 3 x 3 matrices:

3x3
det(A°"°) = a11622033 + a12a23a31 + A13021032

—a11023032 — 412021033 — 413022011
— aili - det(All) — a9 - det(Alg) + a13 - det(Alg)



Determinant

= For general n x n matrices?

det(A) = alldet(All) — algdet(Alg) + ...+ (—1)1+”a1ndet(A1n)

= > (=1)'"ay;det(Ay;)
j=1

Let C;j = (—1)’~’3+jdet(A@-j) be the (i,j)-cofactor, then

det(A) = a11C11 +a12C10+ ... +a1,C1n

mn
= > a1;Cy
j=1

This is called the cofactor expansion across the first row



Determinant

* Problem: Take a 25 x 25 matrix (which is considered small).
The cofactor expansion method requires n! multiplications.
For n = 25, this is 1.5 x 10725 multiplications for which a

today supercomputer would take 500,000 years.

= There are much faster methods, namely using Gauss
elimination to bring the matrix into triangular form.

Cdy ok« % k|
o 0 dg E S * n
A=l 0 0 d =« det(A) = []i, di
0 0 0 dy |

Because for triangular matrices the determinant is the
product of diagonal elements



Determinant: Properties

Row operations (A is still a n x n sguare matrix)

= |f B results from A by interchanging two rows,
then det(B) = —det(A)

= |f B results from A by multiplying one row with a number ¢,
then det(B) = ¢ - det(A)

= |f Bresults from A by adding a multiple of one row to another
row, then det(B) = det(A)

Transpose: det(AT) = det(A)

Multiplication: det(A - B) = det(A) - det(B)

Does not apply to addition! det(A + B) # det(A) + det(B)



Determinant: Applications

= Compute Eigenvalues:
Solve the characteristic polynomial det(A — \-1I) =0

= Area and Volume: area = |det(A)]

(a+c.b+d)

ISR
IS
L Q. Q
o> o
S

|

(7r; i1s 1-th row)




Orthonormal Matrix

= A matrix @ Is orthonormal iff its column (row)
vectors represent an orthonormal basis

1 if 1= .
= As linear transformation, it iIs norm preserving

= Some properties:
= The transpose is the inverse QQ' =Q'Q =1
= Determinant has unity norm (§ 1)

1 =det(I) = det(QT Q) = det(Q)det(QT) = det(Q)?



Rotation Matrix

R.(0)

A Rotation matrix is an orthonormal matrix with det =+1

= 2D Rotations

= 3D Rotations along the main axes

1
0
0

0
cos(0)
sin(f)

|

IMPORTANT: Rotations are

[ 0.707
—0.5
0.5

[ 0.707
0
| 0.707

| cos(f) —sin(0)

k(0) = [ sin(d)  cos(#) ]
0 cos(f) O
— sin(6) R,(0) = 0 1
cos(f) sin(f) 0
not commutative
0 —0.707 | . . [ 1
0.707  —05 |, Ro(7)-Ry(7) | 2
0.707 05 3
-0.5 —0.5 - - |1
0.707 —0.707 |, Ry(Z)Rm(Z) 2
05 05 3

— sin(#)
0
cos(0)

|

[ —1.414
0.586
3.414

[ —1.793
0.707
3.207




Matrices to Represent Affine
Transformations

= A general and easy way to describe a 3D
transformation is via matrices

Translation Vector

= (A= ) e[

Rotation Matrix

= Takes naturally into account the non-
commutativity of the transformations

= Homogeneous coordinates



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

* The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

* The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

@ Bp gives the pose of the
object wrt the robot

v
[ ]
[




Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

* The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the
world]

= Where is the object in the global frame?

Bp gives the pose of the
object wrt the robot

®. o

g

ABp gives the pose of the
object wrt the world

>



Positive Definite Matrix

= The analogous of positive number

» Definition M > 0iff 2l Mz > OVz # 0

= Example

110 1 O 211 _ 2, 92
u Ml_lo]_],{Z]_ ZQ}[01][22]—21+22>0



Positive Definite Matrix

= Properties
= Invertible, with positive definite inverse
= All real eigenvalues = 0
= Traceis >0
= Cholesky decomposition A = 1.1



Linear Systems (1)

Ax =Db

Interpretations:
= A set of linear equations

= A way to find the coordinates X in the
reference system of A such that b is the
result of the transformation of Ax

= Solvable by Gaussian elimination



Linear Systems (2)

Ax =Db

Notes:

= Many efficient solvers exit, e.g., conjugate
gradients, sparse Cholesky decomposition

= One can obtain a reduced system (A’, b’) by
considering the matrix (A, b) and suppressing all
the rows which are linearly dependent

= Let A'X=D" the reduced system with A':n'xm and
b':n'x1 and rank A" = min(n',m) (ows” N columns

= The system might be either over-constrained
(n’>m) or under-constrained (N’<m)



Over-Constrained Systems

= “More (indep) equations than variables”

= An over-constrained system does not
admit an exact solution

= However, If rank A’ = cols(A) one often
computes a minimum norm solution

x = argmin |[|A’x — b’||
X

Note: rank = Maximum number of linearly independent rows/columns



Under-Constrained Systems

= “More variables than (indep) equations”

* The system Is under-constrained if the
number of linearly independent rows of A’
IS smaller than the dimension of b’

= An under-constrained system admits infinite
solutions

= The degree of these infinite solutions is
cols(A’) - rows(A’)



Jacobian Matrix

= |tis a non-square matrix n x m In general

= Gjlven a vector-valued function

[ f1(x) ]
feo = | 1259

i fm.(X) i

= Then, the Jacobian matrix is defined as

- 0f1 9f1 df1 |
dr1 Oxo " Oxp
df>  Jdf> df>

Fyx = | 9z1 OJdzp *°° Oup
Ofm Ofm Ofm
| Oz1 Oxp " Oxn




Jacobian Matrix

= |t is the orientation of the tangent
plane to the vector-valued function at a

given point

= Generalizes the gradient of a scalar
valued function



Further Reading

= A *“quick and dirty” guide to matrices is the
Matrix Cookbook available at:

http://matrixcookbook.com



http://matrixcookbook.com/
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