Vectors

- Arrays of numbers
- Vectors represent a point in a \(n \) dimensional space

\[
\begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{pmatrix}
\]
Vectors: Scalar Product

- Scalar-Vector Product ka
- Changes the length of the vector, but **not** its direction
Vectors: Sum

- Sum of vectors (is commutative)

\[
\begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{pmatrix} + \begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix} = \begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix} + \begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{pmatrix}
\]

- Can be visualized as “chaining” the vectors.
Vectors: Dot Product

- Inner product of vectors (is a scalar)
 \[a \cdot b = b \cdot a = \sum_{i} a_i b_i \]

- If one of the two vectors, e.g. \(\mathbf{a} \), has \(\|\mathbf{a}\| = 1 \) then the inner product \(\mathbf{a} \cdot \mathbf{b} \) returns the length of the projection of \(\mathbf{b} \) along the direction of \(\mathbf{a} \).

- If \(\mathbf{a} \cdot \mathbf{b} = 0 \), the two vectors are **orthogonal**.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>(\mathbf{a} \cdot \mathbf{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(|\mathbf{a}| = 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vectors: Linear (In)Dependence

- A vector \mathbf{b} is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$ if $\mathbf{b} = \sum_i k_i \mathbf{a}_i$

- In other words, if \mathbf{b} can be obtained by summing up the \mathbf{a}_i properly scaled

- If there exist no $\{k_i\}$ such that $\mathbf{b} = \sum_i k_i \mathbf{a}_i$ then \mathbf{b} is independent from $\{\mathbf{a}_i\}$
A vector \mathbf{b} is **linearly dependent** from $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$ if

$$\mathbf{b} = \sum_i k_i \mathbf{a}_i$$

In other words, if \mathbf{b} can be obtained by summing up the \mathbf{a}_i properly scaled.

If there exist no $\{k_i\}$ such that

$$\mathbf{b} = \sum_i k_i \mathbf{a}_i$$

then \mathbf{b} is independent from $\{\mathbf{a}_i\}$.
Matrices

- A matrix is written as a table of values

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix}
\]

- 1st index refers to the row
- 2nd index refers to the column
- Note: a d-dimensional vector is equivalent to a dx1 matrix
Matrices as Collections of Vectors

- Column vectors
Matrices as Collections of Vectors

- Row vectors

\[A = \begin{pmatrix}
\begin{array}{ccc}
a_{11} & a_{12} & \cdots & a_{1m} \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\vdots & & & \\
a_{n1} & a_{n2} & \cdots & a_{nm}
\end{array}
\end{pmatrix} \]

\[\rightarrow \begin{pmatrix}
\begin{array}{c}
a_1^T \\
a_2^T \\
\vdots \\
a_n^T
\end{array}
\end{pmatrix} \]
Important Matrices Operations

- Multiplication by a scalar
- Sum (commutative, associative)
- Multiplication by a vector
- Product (not commutative)
- Inversion (square, full rank)
- Transposition
Scalar Multiplication & Sum

- In the scalar multiplication, every element of the vector or matrix is multiplied with the scalar.

- The sum of two vectors is a vector consisting of the pair-wise sums of the individual entries.

- The sum of two matrices is a matrix consisting of the pair-wise sums of the individual entries.
Matrix Vector Product

- The i^{th} component of Ab is the dot product $a_{i*}^T \cdot b$.
- The vector Ab is linearly dependent from the column vectors $\{a_{*i}\}$ with coefficients $\{b_i\}$.

\[
Ab = \left(\begin{array}{c} a_{1*}^T \\ a_{2*}^T \\ \vdots \\ a_{n*}^T \end{array} \right) \cdot b = \left(\begin{array}{c} a_{1*}^T \cdot b \\ a_{2*}^T \cdot b \\ \vdots \\ a_{n*}^T \cdot b \end{array} \right) = \sum_k a_{*k} b_k
\]
Matrix Vector Product

- If the column vectors of A represent a reference system, the product Ab computes the global transformation of the vector b according to $\{a_i\}$.
Matrix Product

- Can be defined through
 - the dot product of row and column vectors
 - the linear combination of the columns of \(A \) scaled by the coefficients of the columns of \(B \)

\[
C = AB = \begin{pmatrix}
 a^T_{1*} \cdot b_{*1} & a^T_{1*} \cdot b_{*2} & \cdots & a^T_{1*} \cdot b_{*m} \\
 a^T_{2*} \cdot b_{*1} & a^T_{2*} \cdot b_{*2} & \cdots & a^T_{2*} \cdot b_{*m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a^T_{n*} \cdot b_{*1} & a^T_{n*} \cdot b_{*2} & \cdots & a^T_{n*} \cdot b_{*m}
\end{pmatrix} = \begin{pmatrix}
 Ab_{*1} & Ab_{*2} & \cdots & Ab_{*m}
\end{pmatrix}
\]
Matrix Matrix Product

- If we consider the second interpretation, we see that the columns of C are the “transformations” of the columns of B through A
- All the interpretations made for the matrix vector product hold

\[
C = AB \\
= \begin{pmatrix} Ab_1 & Ab_2 & \ldots & Ab_m \end{pmatrix} \\
c_{*i} = Ab_{*i}
\]
Rank

- **Maximum** number of linearly independent rows (columns)
- Dimension of the **image** of the transformation \(f(x) = Ax \)

- When \(A \) is \(m \times n \) we have
 - \(\text{rank}(A) \geq 0 \) and the equality holds iff \(A \) is the null matrix
 - \(\text{rank}(A) \leq \min(m, n) \)

- Computation of the rank is done by
 - Gaussian elimination on the matrix
 - Counting the number of non-zero rows
Inverse

\[AB = I \]

- If A is a square matrix of full rank, then there is a unique matrix $B = A^{-1}$ such that $AB = I$ holds.
- The i^{th} row of A is and the j^{th} column of A^{-1} are:
 - orthogonal (if $i \neq j$)
 - or their dot product is 1 (if $i = j$)
Matrix Inversion

\[AB = I \]

- The \(i^{th} \) column of \(A^{-1} \) can be found by solving the following linear system:

\[A a_{1}^{-1} i = i \]

This is the \(i^{th} \) column of the identity matrix.
Determinant (det)

- Only defined for **square matrices**
- The inverse of A exists if and only if $det(A) \neq 0$
- For 2×2 matrices:
 Let $A = [a_{ij}]$ and $|A| = det(A)$, then

 $$
 \begin{vmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{vmatrix}
 = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}
 $$

- For 3×3 matrices the Sarrus rule holds:

 $$
 \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{vmatrix}
 = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}
 - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}
 $$
For *general* $n \times n$ matrices?

Let A_{ij} be the submatrix obtained from A by deleting the i-th row and the j-th column.

\[
\begin{bmatrix}
1 & 2 & 5 & 0 \\
2 & 3 & 4 & -1 \\
-5 & 8 & 0 & 0 \\
0 & 4 & -2 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{bmatrix}
\]

Rewrite determinant for 3×3 matrices:

\[
det(A_{3\times3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11} = a_{11} \cdot det(A_{11}) - a_{12} \cdot det(A_{12}) + a_{13} \cdot det(A_{13})
\]
Determinant

- For general $n \times n$ matrices?

$$
\begin{align*}
\det(A) &= a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + \ldots + (-1)^{1+n} a_{1n} \det(A_{1n}) \\
&= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j})
\end{align*}
$$

Let $C_{ij} = (-1)^{i+j} \det(A_{ij})$ be the (i,j)-cofactor, then

$$
\begin{align*}
\det(A) &= a_{11} C_{11} + a_{12} C_{12} + \ldots + a_{1n} C_{1n} \\
&= \sum_{j=1}^{n} a_{1j} C_{1j}
\end{align*}
$$

This is called the **cofactor expansion** across the first row.
Determinant

- **Problem:** Take a 25 x 25 matrix (which is considered small). The cofactor expansion method requires \(n! \) multiplications. For \(n = 25 \), this is \(1.5 \times 10^{25} \) multiplications for which a today supercomputer would take 500,000 years.

- There are much faster methods, namely using **Gauss elimination** to bring the matrix into triangular form.

\[
A = \begin{bmatrix}
 d_1 & * & * & * \\
 0 & d_2 & * & * \\
 0 & 0 & d_3 & * \\
 0 & 0 & 0 & d_4
\end{bmatrix}
\]

\[
det(A) = \prod_{i=1}^{n} d_i
\]

Because for **triangular matrices** the determinant is the product of diagonal elements.
Determinant: Properties

- **Row operations** (A is still a $n \times n$ square matrix)
 - If B results from A by interchanging two rows, then $\det(B) = -\det(A)$
 - If B results from A by multiplying one row with a number c, then $\det(B) = c \cdot \det(A)$
 - If B results from A by adding a multiple of one row to another row, then $\det(B) = \det(A)$

- **Transpose**: $\det(A^T) = \det(A)$

- **Multiplication**: $\det(A \cdot B) = \det(A) \cdot \det(B)$

- Does **not** apply to addition! $\det(A + B) \neq \det(A) + \det(B)$
Determinant: Applications

- **Compute Eigenvalues:**
 Solve the characteristic polynomial $\det(A - \lambda \cdot I) = 0$

- **Area and Volume:**
 $\text{area} = |\det(A)|$

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

\[A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \]

(r_i is i-th row)
Orthonormal Matrix

- A matrix Q is **orthonormal** iff its column (row) vectors represent an **orthonormal** basis

\[
q^T_i \cdot q_j = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}, \forall i, j
\]

- As linear transformation, it is **norm** preserving

- Some properties:
 - The transpose is the inverse $QQ^T = Q^TQ = I$
 - Determinant has unity norm (\S 1)
 \[
 1 = \det(I) = \det(Q^TQ) = \det(Q)\det(Q^T) = \det(Q)^2
 \]
Rotation Matrix

- A Rotation matrix is an orthonormal matrix with $\det = +1$
 - 2D Rotations

 $R(\theta) = \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
 \end{bmatrix}$

 - 3D Rotations along the main axes

 $R_x(\theta) = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & \cos(\theta) & -\sin(\theta) \\
 0 & \sin(\theta) & \cos(\theta)
 \end{bmatrix}$

 $R_y(\theta) = \begin{bmatrix}
 \cos(\theta) & 0 & -\sin(\theta) \\
 0 & 1 & 0 \\
 \sin(\theta) & 0 & \cos(\theta)
 \end{bmatrix}$

- **IMPORTANT:** Rotations are not commutative

$$
R_x\left(\frac{\pi}{4}\right) \cdot R_y\left(\frac{\pi}{4}\right) = \begin{bmatrix}
0.707 & 0 & -0.707 \\
-0.5 & 0.707 & -0.5 \\
0.5 & 0.707 & 0.5
\end{bmatrix},
R_x\left(\frac{\pi}{4}\right) \cdot R_y\left(\frac{\pi}{4}\right) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}
$$

$$
R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) = \begin{bmatrix}
0.707 & -0.5 & -0.5 \\
0 & 0.707 & -0.707 \\
0.707 & 0.5 & 0.5
\end{bmatrix},
R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}
$$
Matrices to Represent Affine Transformations

- A general and easy way to describe a 3D transformation is via matrices.

\[
A = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \quad A^{-1} = \begin{pmatrix} R^T & -R^Tt \\ 0 & 1 \end{pmatrix} \quad p = \begin{pmatrix} t \\ 1 \end{pmatrix}
\]

- Takes naturally into account the non-commutativity of the transformations.
- Homogeneous coordinates.
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a **robot** in the space
 - Matrix B represents the position of a sensor on the robot
 - The **sensor** perceives an **object** at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives the pose of the object wrt the robot
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a **robot** in the space
 - Matrix B represents the position of a sensor on the robot
 - The **sensor** perceives an **object** at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world
Positive Definite Matrix

- The analogous of positive number

- Definition \(M > 0 \) iff \(z^T M z > 0 \forall z \neq 0 \)

- Example

\[
M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0
\]
Positive Definite Matrix

- **Properties**
 - *Invertible*, with positive definite inverse
 - All real **eigenvalues** > 0
 - **Trace** is > 0
 - **Cholesky** decomposition $A = LL^T$
Linear Systems (1)

\[Ax = b \]

Interpretations:
- A set of linear equations
- A way to find the coordinates \(x \) in the reference system of \(A \) such that \(b \) is the result of the transformation of \(Ax \)
- Solvable by Gaussian elimination
Linear Systems (2)

$Ax = b$

Notes:

- Many efficient solvers exist, e.g., conjugate gradients, sparse Cholesky decomposition
- One can obtain a reduced system (A', b') by considering the matrix (A, b) and suppressing all the rows which are linearly dependent
- Let $A'x = b'$ the reduced system with $A':n'x m$ and $b':n'x 1$ and rank $A' = \min(n', m)$
- The system might be either over-constrained ($n' > m$) or under-constrained ($n' < m$)
Over-Constrained Systems

- “More (indep) equations than variables”
- An over-constrained system does not admit an **exact solution**
- However, if \(\text{rank } A' = \text{cols}(A) \) one often computes a **minimum norm solution**

\[
x = \arg\min_x \|A'x - b'\|
\]

Note: rank = Maximum number of linearly independent rows/columns
Under-Constrained Systems

- “More variables than (indep) equations”
- The system is **under-constrained** if the number of linearly independent rows of A' is smaller than the dimension of b'
- An under-constrained system admits infinite solutions
- The degree of these infinite solutions is $\text{cols}(A') - \text{rows}(A')$
Jacobian Matrix

- It is a **non-square matrix** $n \times m$ in general

- Given a vector-valued function

 $$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix}$$

- Then, the **Jacobian matrix** is defined as

 $$\mathbf{F}_x = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$
Jacobian Matrix

- It is the orientation of the **tangent plane** to the vector-valued function at a given point.

- **Generalizes the gradient** of a scalar valued function.
Further Reading

- A “quick and dirty” guide to matrices is the Matrix Cookbook available at:
 http://matrixcookbook.com