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Probabilistic Robotics 
Key idea:  

Explicit representation of uncertainty  
(using the calculus of probability theory) 

§  Perception   = state estimation 
§  Action         = utility optimization 
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P(A) denotes probability that proposition A is true. 

§    
 

§   
  

§    

Axioms of Probability Theory 

0 ≤ P(A) ≤1

P(True) =1

P(A∨B) = P(A)+P(B)−P(A∧B)

P(False) = 0
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A Closer Look at Axiom 3 

B 

BA∧A B
True

P(A∨B) = P(A)+P(B)−P(A∧B)
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Using the Axioms 

P(A∨¬A) = P(A)+P(¬A)−P(A∧¬A)
P(True) = P(A)+P(¬A)−P(False)
1 = P(A)+P(¬A)− 0

P(¬A) = 1−P(A)
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Discrete Random Variables 

§  X denotes a random variable 

§  X can take on a countable number of values 
in {x1, x2, …, xn} 

§  P(X=xi) or P(xi) is the probability that the 
random variable X takes on value xi 

§  P( ) is called probability mass function 
 

§  E.g. P(Room) = 0.7, 0.2, 0.08, 0.02

. 
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Continuous Random Variables 

§  X takes on values in the continuum. 
§  p(X=x) or p(x) is a probability density 

function 

§  E.g. 

P(x ∈ [a,b]) = p(x)dx
a

b

∫

x 

p(x) 
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“Probability Sums up to One” 

P(x) =1
x
∑ p(x) dx =1∫

Discrete case Continuous case 
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Joint and Conditional Probability 

§  P(X=x and Y=y) = P(x,y) 

§  If X and Y are independent then  
  P(x,y) = P(x) P(y) 

§  P(x | y) is the probability of x given y 
  P(x | y) = P(x,y) / P(y) 
  P(x,y)   = P(x | y) P(y) 

§  If X and Y are independent then 
  P(x | y) = P(x) 
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Law of Total Probability 

P(x) = P(x | y)P(y)
y
∑

Discrete case Continuous case 

p(x) = p(x | y)p(y) dy∫
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 Marginalization 

P(x) = P(x, y)
y
∑ p(x) = p(x, y) dy∫

Discrete case Continuous case 
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Bayes Formula 

P(x, y) = P(x | y)P(y) = P(y | x)P(x)
⇒

P(x y) = P(y | x) P(x)
P(y)

=
likelihood ⋅prior

evidence
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Normalization 
P(x y) = P(y | x) P(x)

P(y)
=η P(y | x)P(x)

η = P(y)−1 = 1
P(y | x)

x
∑ P(x)

∀x : auxx|y = P(y | x) P(x)

η =
1
auxx|y

x
∑

∀x :P(x | y) =η auxx|y

Algorithm: 
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Bayes Rule  
with Background Knowledge 

P(x | y, z) = P(y | x, z) P(x | z)
P(y | z)
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Conditional Independence 

)|()|(),( zyPzxPzyxP =

),|()( yzxPzxP =

),|()( xzyPzyP =

 

§  Equivalent to 
    
  and 

 
§  But this does not necessarily mean 

    (independence/marginal independence) 

)()(),( yPxPyxP =
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Simple Example of State Estimation 

§  Suppose a robot obtains measurement z 
§  What is P(open|z)? 
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Causal vs. Diagnostic Reasoning 

§  P(open|z) is diagnostic 
§  P(z|open) is causal 
§  Often causal knowledge is easier to 

obtain 
§  Bayes rule allows us to use causal 

knowledge: 

P(open | z) = P(z | open)P(open)P(z)

count frequencies! 
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Example 
§  P(z|open) = 0.6   P(z|¬open) = 0.3 
§  P(open) = P(¬open) = 0.5 

P(open | z) = P(z | open)P(open)
P(z | open)p(open)+P(z |¬open)p(¬open)

P(open | z) = 0.6 ⋅0.5
0.6 ⋅0.5+ 0.3⋅0.5

=
0.3

0.3+ 0.15
= 0.67

§  z raises the probability that the door is open 
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Combining Evidence 
§  Suppose our robot obtains another 

observation z2 

§  How can we integrate this new information? 

§  More generally, how can we estimate 
P(x | z1, ..., zn )? 
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Recursive Bayesian Updating 

P(x | z1,…, zn) = P(zn | x, z1,…, zn − 1) P(x | z1,…, zn − 1)
P(zn | z1,…, zn − 1)

Markov assumption:  
zn is independent of z1,...,zn-1 if we know x 

P(x | z1,…, zn) = P(zn | x) P(x | z1,…, zn − 1)
P(zn | z1,…, zn − 1)

=η P(zn | x) P(x | z1,…, zn − 1)

=η1...n P(zi | x)
i=1...n
∏
#

$
%

&

'
(P(x)
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Example: Second Measurement  

§  P(z2|open) = 0.25   P(z2|¬open) = 0.3 
§  P(open|z1)=2/3 
 

P(open | z2, z1) =
P(z2 | open) P(open | z1)

P(z2 | open) P(open | z1)+P(z2 |¬open) P(¬open | z1)

=

1
4
⋅
2
3

1
4
⋅
2
3
+
3
10

⋅
1
3

=

1
6

1
6
+
1
10

=

1
6
4
15

=
5
8
= 0.625

•  z2 lowers the probability that the door is open 
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A Typical Pitfall 
§  Two possible locations x1 and x2 

§  P(x1)=0.99  
§  P(z|x2)=0.09 P(z|x1)=0.07  
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Actions 

§  Often the world is dynamic since 
§  actions carried out by the robot, 
§  actions carried out by other agents, 
§  or just the time passing by 

 change the world 
 
§  How can we incorporate such actions? 
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Typical Actions 

§  The robot turns its wheels to move 
§  The robot uses its manipulator to grasp 

an object 
§  Plants grow over time… 

§  Actions are never carried out with 
absolute certainty 

§  In contrast to measurements, actions 
generally increase the uncertainty 
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Modeling Actions 

§  To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf  

P(x|u,x’) 
 

§  This term specifies the pdf that 
executing u changes the state 
from x’ to x. 
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Example: Closing the door 
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State Transitions 
P(x|u,x’) for u = “close door”: 
 
 
 
 
 
 
 
If the door is open, the action “close door” 
succeeds in 90% of all cases 

open closed0.1 1
0.9

0
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Integrating the Outcome of Actions 

P(x | u) = P(x | u, x ')P(x ')dx '∫

P(x | u) = P(x | u, x ')P(x ')∑

Continuous case: 
 
 
 
 
 
Discrete case: 
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Example: The Resulting Belief 
P(closed | u) = P(closed | u, x ')P(x ')∑

= P(closed | u,open)P(open)
+P(closed | u,closed)P(closed)

=
9
10

∗
5
8
+
1
1
∗
3
8
=
15
16

P(open | u) = P(open | u, x ')P(x ')∑
= P(open | u,open)P(open)
+P(open | u,closed)P(closed)

=
1
10

∗
5
8
+
0
1
∗
3
8
=
1
16

=1−P(closed | u)
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Bayes Filters: Framework 
§  Given: 

§  Stream of observations z and action data u: 
 
 

§  Sensor model P(z|x) 
§  Action model P(x|u,x’) 
§  Prior probability of the system state P(x) 

§  Wanted:  
§  Estimate of the state X of a dynamical system 
§  The posterior of the state is also called Belief: 

Bel(xt ) = P(xt | u1, z1…,ut, zt )

},,,{ 11 ttt zuzud …=
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Markov Assumption 

Underlying Assumptions 
§  Static world 
§  Independent noise 
§  Perfect model, no approximation errors 

p(xt | x1:t−1, z1:t−1,u1:t ) = p(xt | xt−1,ut )
p(zt | x0:t, z1:t−1,u1:t ) = p(zt | xt )
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=η P(zt | xt ) P(xt | ut, xt−1)∫ Bel(xt−1) dxt−1

Bayes Filters 

=η P(zt | xt,u1, z1,…,ut ) P(xt | u1, z1,…,ut )Bayes 

z  = observation 
u  = action 
x  = state 

Bel(xt ) = P(xt | u1, z1…,ut, zt )

Markov =η P(zt | xt ) P(xt | u1, z1,…,ut )

Markov =η P(zt | xt ) P(xt | ut, xt−1)∫ P(xt−1 | u1, z1,…,ut ) dxt−1

=η P(zt | xt ) P(xt | u1, z1,…,ut, xt−1)∫
P(xt−1 | u1, z1,…,ut ) dxt−1

Total prob. 

Markov =ηP(zt | xt ) P(xt | ut, xt−1)∫ P(xt−1 | u1, z1,…, zt−1) dxt−1
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Bayes Filter Algorithm  
1.   Algorithm Bayes_filter(Bel(x), d): 
2.   η=0	

3.   If d is a perceptual data item z then 
4.       For all x do 
5.    
6.    
7.       For all x do 
8.    

9.   Else if d is an action data item u then 
10.       For all x do 
11.    

12.   Return Bel’(x)       

Bel '(x) = P(z | x)Bel(x)
η =η +Bel '(x)

Bel '(x) =η−1Bel '(x)

Bel '(x) = P(x | u, x ')∫ Bel(x ') dx '

Bel(xt ) =η P(zt | xt ) P(xt | ut, xt−1)∫ Bel(xt−1) dxt−1
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Bayes Filters are Familiar! 

§  Kalman filters 
§  Particle filters 
§  Hidden Markov models 
§  Dynamic Bayesian networks 
§  Partially Observable Markov Decision 

Processes (POMDPs) 

Bel(xt ) =η P(zt | xt ) P(xt | ut, xt−1)∫ Bel(xt−1) dxt−1
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Summary 

§  Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise. 

§  Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence. 

§  Bayes filters are a probabilistic tool 
for estimating the state of dynamic 
systems. 


