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What 1s SLAM?

= Estimate the pose of a robot and the map of
the environment at the same time

= SLAM iIs hard, because

= a map Is needed for localization and
= a good pose estimate is needed for mapping

= Localization: inferring location given a
map

= Mapping: inferring a map given locations

= SLAM: learning a map and locating the
robot simultaneously



The SLAM Problem

= SLAM has long been regarded as a
chicken-or-egg problem:
— a map Is needed for localization and
— a pose estimate Is needed for mapping




SLAM Applications

= SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

= At home: vacuum cleaner, lawn mower

= Air: surveillance with unmanned air vehicles
= Underwater: reef monitoring

= Underground: exploration of mines

= Space: terrain mapping for localization



SLAM Applications
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Map Representations

Examples: Subway map, city map,
landmark-based map
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Maps are topological and/or metric
models of the environment



Map Representations in Robotics
= Grid maps or scans, 2d, 3d N

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99;
Haehnel, 01; Grisetti et al., 05; ...]
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...



The SLAM Problem

= SLAM Is considered a fundamental

problems for robots to become truly
autonomous

= Large variety of different SLAM
approaches have been developed

= The majority uses probabilistic
concepts

= History of SLAM dates back to the
mid-eighties



Feature-Based SLAM

Given:
= The robot’ s controls
Ul:k :{u17u27"'7uk} “
= Relative observations
Zl:k — {Z17227"'7Z7€} '-...
Wanted: .
= Map of features .
m = {my,mo,..., my}

= Path of the robot
Xl:k — {mla L2y wk}



Feature-Based SLAM
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Why Is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
11



Why Is SLAM a hard problem?

* The mapping between observations and
landmarks Is unknown

= Picking wrong data associations can have
catastrophic consequences (divergence)
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SLAM: Simultaneous
Localization And Mapping

= Full SLAM:
p(XO:t ! m | Z1:t ! u1:t)

Estimates entire path and map!

= Online SLAM:
p(xt d m | Z1:t ’ u1:t) — jj . j p(xl:t’ m | Z1:t J ul:t)dxldXZ'"dXt—l

Estimates most recent pose and map!

= Integrations (marginalization) typically

done recursively, one at a time 13



Graphical Model of Full SLAM

p(xl:t+1’ m | Zl:t+1’ u1:t+1)




Graphical Model of Online SLAM

P(Xi1s M| Zygy, Upgyg) = jj _[ P(Xps1r M| Zig g Ugig JAX, X, 0X,
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Motion and Observation Model

Iy = f(xt—la Ut)

"Motion model"

"Observation model"
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Remember the KF Algorithm

Algorithm Kalman_filter(p,.;, ¢4, Ui, Zy):

Prediction:

/_lt = A[lut—l + Btut
2t = A[Zt_lA[T +R,

N F

Correction:
K, ==C/ (C,ZC/ +Q)™
M =y + Kt(zt__ Ct/ut)
z =(1-K_C)Z

© NG

Return p, 2,
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EKF SLAM: State representation

= Localization

2 2 2
o o o
3x1 pose vector Tk g Czy a0
33 _ Xr = | Yk Y = Ope Ty Oyp
2 2 2
X3 cov. matrix 0, 0z, 03, O
= SLAM
Landmarks simply extend the state.
Growing state vector and covariance matrix!
. Xp [ Xp YrRM, XRM, ‘' XRM, |
m; YM,R XM, XM M, ' XM, M,
x, = | M2 Y. = | MR XM, XM, XM,M,

m,, XM.R XM, M, 2XM,M, "°°  2M,
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EKF SLAM: State representation

= Map with n landmarks: (3+2n)-dimensional
Gaussian

A

xr Oxx Oxy Tx0 Urm, . Orm;, L v Oxm,,
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Yy yy Yy . o Y
0 oy 0, g | G0 T, Torn, 900
Yy . Y Yy
ml,a: Omq o Uml,xy gg Jml,mml,x O-ml,a:ml,y Uml,mmn x Oml,mmn y
mi.y Om, y& Oml,yy o Oml,yml,w O-ml,yml,y O-mlvymn . mi,yMn,y
mn,a:' O-mn . O-mn,q;y gg Jmn,mml,m Omn,xml,y Jﬂlnmmn » U’f}%n,x{rnﬁ,@
\ M,y ) Om, .0 9m, 4 90 Om, mi, 9m, ,mi, Oy, e a0, am,
7 by

= Can handle hundreds of dimensions
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EKF SLAM: Filter Cycle

a b W N

. State prediction

. Measurement prediction
. Measurement

. Data association

. Update



EKF SLAM: State Prediction




EKF SLAM: Measurement
Prediction




EKF SLAM: Obtained
Measurement




EKF SLAM: Data Association




EKF SLAM: Update Step




EKF SLAM

Correlation matrix
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EKF SLAM

Correlation matrix

27



EKF SLAM

Correlation matrix

Map



EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

[ Yp 0 0
0 Xy, -+ 0 2pM; = 03x2
S =
i 0 0 ce EMn |

= Landmark and robot uncertainties would
pecome overly optimistic

= Data association would fall
= Multiple map entries of the same landmark
= Inconsistent map
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SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot “closes a loop™)

= Structurally identical to data association,
but
= high levels of ambiguity
* possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)
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SLAM: Loop Closure

= Before loop closure
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SLAM: Loop Closure

= After loop closure
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SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.g.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties
(Linear Case)

* The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

2r " When a new land-
- mark is initialized,
Its uncertainty is
maximal

1 = Landmark
uncertainty
decreases

05f 1 monotonically

— with each new

[ , , ., Observation

- 80 90 100 110

Time (sec) [Dissanayake et al., 2001] 39
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KF-SLAM Properties
(Linear Case)

* In the limit, the landmark estimates
become fully correlated

[Dissanayake et al., 2001] 4



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
INn the vehicle location estimate.
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[Dissanayake et al., 2001] 44




EKF SLAM Example:
Victoria Park Dataset
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Victoria Park: Estimated

Trajectory
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Victoria Park: Landmarks
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard] 46
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EKF SLAM Example: Tennis
Court
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EKF SLAM Example: Line
Features
= KTH Bakery Data Set "[« “;:'\
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EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of landmarks: O(n?)

= Total cost to build a map with n
landmarks: O(n3)

= Memory consumption: O(n?)

* Problem: becomes computationally
Intractable for large maps!

= There exists variants to circumvent
these problems
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SLAM Techniques

= EKF SLAM
* FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.
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EKF-SLAM: Summary

= The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge Iif nonlinearities are large
(and the real world is nonlinear ...)

= Can deal only with a single mode
= Successful INn medium-scale scenes

= Approximations exists to reduce the
computational complexity
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