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The SLAM Problem

= SLAM stands for simultaneous localization
and mapping

= The task of building a map while estimating
the pose of the robot relative to this map

= Why is SLAM hard?
Chicken-or-egg problem:

= A map is needed to localize the robot
= A pose estimate is needed to build a map



The SLAM Problem

A robot moving though an unknown, static environment

Given: 2t

= The robot’s
controls

= Observations of
nearby features s ,

Estimate:

= Map of features
= Path of the robot




Map Representations

Typical models are:
= Feature maps

= Grid maps (occupancy or reflection probability
maps)




Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map 5



Why is SLAM a Hard Problem?
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= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations



Data Association Problem
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= A data association is an assignment of
observations to landmarks

= In general there are more than ()
(n observations, m landmarks) possible
associations

= Also called “assignment problem”
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Particle Filters

" Represent belief by random samples

" Estimation of non-Gaussian, nonlinear
processes

"= Sampling Importance Resampling (SIR) principle
" Draw the new generation of particles
" Assign an importance weight to each particle

" Resampling

" Typical application scenarios are tracking,
localization, ...



Localization vs. SLAM

= A particle filter can be used to solve both problems
= | ocalization: state space <X, y, 6>

= SLAM: state space <x, y, 6, map>
= for landmark maps = </, I, ..., [.,>
= for grid maps = <C;4, Cy5, -y C1ny C21y +ory Com>

= Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!



Dependencies

= Is there a dependency between the
dimensions of the state space?

= If so, can we use the dependency to solve
the problem more efficiently?
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Dependencies

= |s there a dependency between certain
dimensions of the state space?

= If so, can we use the dependency to solve
the problem more efficiently?

= In the SLAM context

= The map depends on the poses of the
robot.

= We know how to build a map given the
position of the sensor is known.
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Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(wl:tall:m | Zl:tauo:t—l) —
p(x1:¢ ‘ 214, U0:t—1) - P(L1:m | T1:¢, 21:¢)

Factorization first introduced by Murphy in 1999 12



Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(a”fl:tall:m | Zl:tauo:t—l) —
] p(x1:¢ ‘ 214, U0:t—1) - P(L1:m ‘ T1:¢, 21:¢)

SLAM posterior ‘
Robot path posterior

landmark positions
Does this help to solve the problem?

Factorization first introduced by Murphy in 1999 13



Mapping using Landmarks

Landmark 2 —
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Bayes Network and D-Separation
(See AI or PGM course)

= X andY are independent if d-separated by V

= VY d-separates X from Y if every undirected
path between X and Y is blocked by V

= A path is blocked by V if there is a node W
on the graph such that either:

= W has converging arrows along the path
(— W <) and neither W nor its descendants are
observed (in V), or

= W does not have converging arrows along the
path (- W —- or <« W —) and W is observed
(We V).
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Mapping using Landmarks
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Knowledge of the robot’s true path renders
landmark positions conditionally independent
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Factored Posterior
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Rao-Blackwellization

p(xlitallim | Zl:tauo:t—l) —
M

p(x1:¢ | z1:6,u0:t—1) - || p(s | @104, 21:4)
i—1

= This factorization is also called Rao-Blackwellization

= Given that the second term can be computed
efficiently, particle filtering becomes possible!
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FastSLAM

= Rao-Blackwellized particle filtering based on
landmarks [Montemerlo et al., 2002]

= Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

= Each particle therefore has to maintain M EKFs

Pa”'c'e - Landmark 1 | Landmark 2

Pa”'c'e - Landmark 1 | Landmark 2 8l Landmark M

Landmark M

PamCle - Landmark 1 § Landmark 2 Landmark M




FastSLAM - Action Update
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FastSLAM - Sensor Update
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FastSLAM - Sensor Update

Particle #1

Particle #2
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Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM - Sensor Update
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Update map
of particle #1

Update map
of particle #2

Update map
of particle #3
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FastSLAM - Video
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FastSLAM Complexity

= Update robot particles based on
control u,_4

= Incorporate observation z, into
Kalman filters

= Resample particle set

N = Number of particles
M = Number of map features

O(N)

Constant time
(per particle)

O(Ne<log(M))

Log time (per particle)

O(Ne<log(M))

Log time (per particle)

O(Nelog(M))

Log time in the number
of landmarks, linear in
the number of particle255



Data Association Problem

= Which observation belongs to which
landmark?
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= A robust SLAM solution must consider
possible data associations

= Potential data associations depend also
on the pose of the robot
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Multi-Hypothesis Data Association

= Data association is done
on a per-particle basis Vo

= Robot pose error is o L\
factored out of data . -,
association decisions x.@

28



Per-Particle Data Association
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Was the observation
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or the brown landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick a random association weighted by

the observation likelihoods

= If the probability is too low, generate a new

landmark
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Results — Victoria Park

4 km traverse

= < 5 mRMS
position error

= 100 particles

Blue = GPS
= FastSLAM

Dataset courtesy of University of Sydney 30



Results - Victoria Park (Video)

Dataset courtesy of University of Sydney 31



Results — Data Association

Comparison of FastSLAM and EKF Given Motion Ambiguity
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FastSLAM Summary

FastSLAM factors the SLAM posterior into
low-dimensional estimation problems
= Scales to problems with over 1 million features

FastSLAM factors robot pose uncertainty
out of the data association problem

= Robust to significant ambiguity in data

association

= Allows data association decisions to be delayed

until unambiguous evidence is co

Advantages compared to the c
approach (especially with non-

Complexity of O(N log M)

lected

assical EKF
inearities)
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