Introduction to Mobile Robotics

SLAM – Landmark-based FastSLAM

Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Partial slide courtesy of Mike Montemerlo
The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map

Why is SLAM hard?
Chicken-or-egg problem:
- A map is needed to localize the robot
- A pose estimate is needed to build a map
The SLAM Problem

A robot moving though an unknown, static environment

Given:
- The robot’s controls
- Observations of nearby features

Estimate:
- Map of features
- Path of the robot
Map Representations

Typical models are:

- Feature maps
- Grid maps (occupancy or reflection probability maps)
Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map
Why is SLAM a Hard Problem?

- In the real world, the mapping between observations and landmarks is unknown.
- Picking wrong data associations can have catastrophic consequences.
- Pose error correlates data associations.
Data Association Problem

- A data association is an assignment of observations to landmarks
- In general there are more than \(\binom{n}{m} \) (n observations, m landmarks) possible associations
- Also called “assignment problem”
Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes

- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling

- Typical application scenarios are tracking, localization, ...
Localization vs. SLAM

- A particle filter can be used to solve both problems

- Localization: state space $<x, y, \theta>$

- SLAM: state space $<x, y, \theta, \text{map}>$
 - for landmark maps = $<l_1, l_2, \ldots, l_m>$
 - for grid maps = $<c_{11}, c_{12}, \ldots, c_{1n}, c_{21}, \ldots, c_{nm}>$

- **Problem:** The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!
Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.
Factored Posterior (Landmarks)

\[p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = \]
\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t}) \]

FactORIZATION first introduced by Murphy in 1999
Factored Posterior (Landmarks)

\[p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t}) \]

poses, map, observations & movements

SLAM posterior

Robot path posterior

landmark positions

Does this help to solve the problem?

Factorization first introduced by Murphy in 1999
Mapping using Landmarks

Landmark 1 →
observations →
Robot poses →
controls →
Landmark 2 →

\[I_1 \rightarrow x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \ldots \rightarrow x_t \]

\[l_2 \rightarrow z_1 \rightarrow u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow u_{t-1} \rightarrow z_t \]

\[x_0, x_1, x_2, x_3, \ldots, x_t \]

\[l_1, z_1, z_2, z_3, z_t \]
Bayes Network and D-Separation (See AI or PGM course)

- X and Y are independent if d-separated by \mathcal{N}
- \mathcal{N} d-separates X from Y if every undirected path between X and Y is blocked by \mathcal{N}
- A path is blocked by \mathcal{N} if there is a node W on the graph such that either:
 - W has converging arrows along the path $(\rightarrow W \leftarrow)$ and neither W nor its descendants are observed (in \mathcal{N}), or
 - W does not have converging arrows along the path $(\rightarrow W \rightarrow)$ or $(\leftarrow W \rightarrow)$ and W is observed ($W \in \mathcal{N}$).
Knowledge of the robot’s true path renders landmark positions conditionally independent.
Factored Posterior

\[p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) \]
\[= \quad p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t}) \]
\[= \quad p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t}) \]

Robot path posterior (localization problem)
Conditionally independent landmark positions
Rao-Blackwellization

\[p(x_{1:t}, l_{1:m} | z_{1:t}, u_{0:t-1}) = \]
\[p(x_{1:t} | z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i | x_{1:t}, z_{1:t}) \]

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!
FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs
FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1 Filter

Landmark #2 Filter
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1 Filter

Landmark #2 Filter
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Update map of particle #1

Update map of particle #2

Update map of particle #3
FastSLAM - Video
FastSLAM Complexity

- Update robot particles based on control u_{t-1}
- Incorporate observation z_t into Kalman filters
- Resample particle set

$N =$ Number of particles
$M =$ Number of map features

$O(N)$
Constant time (per particle)

$O(N \cdot \log(M))$
Log time (per particle)

$O(N \cdot \log(M))$
Log time in the number of landmarks, linear in the number of particles
Data Association Problem

- Which observation belongs to which landmark?

- A robust SLAM solution must consider possible data associations
- Potential data associations depend also on the pose of the robot
Multi-Hypothesis Data Association

- Data association is done on a per-particle basis

- Robot pose error is factored out of data association decisions
Per-Particle Data Association

Was the observation generated by the red or the brown landmark?

\[P(\text{observation} | \text{red}) = 0.3 \quad P(\text{observation} | \text{brown}) = 0.7 \]

- Two options for per-particle data association
 - Pick the most probable match
 - Pick a random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark
Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS
Yellow = FastSLAM

Dataset courtesy of University of Sydney
Results – Victoria Park (Video)

Dataset courtesy of University of Sydney
Results – Data Association

Comparison of FastSLAM and EKF Given Motion Ambiguity

Robot RMS Position Error (m)

Error Added to Rotational Velocity (std.)
FastSLAM Summary

- FastSLAM factors the SLAM posterior into low-dimensional estimation problems
 - Scales to problems with over 1 million features
- FastSLAM factors robot pose uncertainty out of the data association problem
 - Robust to significant ambiguity in data association
 - Allows data association decisions to be delayed until unambiguous evidence is collected
- Advantages compared to the classical EKF approach (especially with non-linearities)
- Complexity of $O(N \log M)$