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 SLAM stands for simultaneous localization and 

mapping 

 The task of building a map while estimating  

the pose of the robot relative to this map 

 

 Why is SLAM hard? 

Chicken and egg problem:  

a map is needed to localize the robot and  

a pose estimate is needed to build a map 

The SLAM Problem 
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Mapping using Raw Odometry 
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 Can we solve the SLAM problem if no pre-defined 

landmarks are available? 

 Can we use the ideas of FastSLAM to build grid 

maps? 

 As with landmarks, the map depends on the poses 

of the robot during data acquisition 

 If the poses are known, grid-based mapping is easy 

(“mapping with known poses”) 

 

 

Grid-based SLAM 
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Rao-Blackwellization 

Factorization first introduced by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization 

SLAM posterior 

Robot path posterior 

Mapping with known poses 

Factorization first introduced by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization 

This is localization, use MCL 

Use the pose estimate  

from the MCL and apply  

mapping with known poses 
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A Graphical Model of Mapping 
with Rao-Blackwellized PFs 
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Mapping with Rao-
Blackwellized Particle Filters 

 Each particle represents a possible trajectory of 
the robot 

 

 Each particle  

 maintains its own map and  

 updates it upon “mapping with known poses” 

 

 Each particle survives with a probability 
proportional to the likelihood of the observations 
relative to its own map 
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Particle Filter Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 
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Problem 

 Each map is quite big in case of grid maps 

 Since each particle maintains its own map 

 Therefore, one needs to keep the number 
of particles small 

 

 Solution: 
Compute better proposal distributions! 

 Idea: 
Improve the pose estimate before applying 
the particle filter 
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Pose Correction Using Scan 
Matching 

Maximize the likelihood of the i-th pose and 
map relative to the (i-1)-th pose and map 

robot motion current measurement 

map constructed so far 
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Motion Model for Scan Matching 

Raw Odometry 

Scan Matching 



14 

Mapping using Scan Matching 
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FastSLAM with Improved 
Odometry 

 Scan-matching provides a locally 
consistent pose correction 
 

 Pre-correct short odometry sequences 
using scan-matching and use them as 
input to FastSLAM 
 

 Fewer particles are needed, since the 
error in the input is smaller 

 

 
[Haehnel et al., 2003] 
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Graphical Model for Mapping 
with Improved Odometry 
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FastSLAM with Scan-Matching 
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FastSLAM with Scan-Matching 

Loop Closure 
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FastSLAM with Scan-Matching 
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Comparison to Standard FastSLAM 

 Same model for observations 

 Odometry instead of scan matching as input 

 Number of particles varying from 500 to 2.000 

 Typical result: 
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Conclusion (thus far …) 

 The presented approach is a highly efficient 
algorithm for SLAM combining ideas of scan 
matching and FastSLAM 

 Scan matching is used to transform sequences of 
laser measurements into odometry measurements 

 This version of grid-based FastSLAM can handle 
larger environments than before in “real time” 



22 

What’s Next? 

 Further reduce the number of particles 

 Improved proposals will lead to more  
accurate maps 

 Use the properties of our sensor when 
drawing the next generation of particles 
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The Optimal Proposal 
Distribution 

For lasers                      is extremely peaked 

and dominates the product. 

[Arulampalam et al., 01] 

We can safely approximate 
                   by a constant: 
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Resulting Proposal Distribution 

Gaussian approximation: 
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Resulting Proposal Distribution 

Approximate this equation by a Gaussian: 

Sampled points around  
the maximum 

maximum reported 
by a scan matcher 

Gaussian  
approximation 

Draw next 
generation of 
samples 
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Estimating the Parameters of 
the Gaussian for each Particle 

 xj are a set of sample points around the 

point x* the scan matching has converged 

to.  

  is a normalizing constant (                    ) 
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Computing the Importance 
Weight 

Sampled points around the  
maximum of the observation  
likelihood 
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Computing the Importance 
Weight 

Sampled points around the  
maximum of the observation  
likelihood 

History of the particle 

How well fits the proposal distribution 
 into the map 
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Improved Proposal 

 The proposal adapts to the structure of 
the environment 
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Resampling 

 Sampling from an improved proposal reduces the 
effects of resampling 

 However, resampling at each step limits the 
“memory” of our filter 

 Supposed we loose at each frame 25% of the 
particles, in the worst case we have a memory of 
only 4 steps. 

 

 

 

 

Goal: reduce the number of resampling actions 
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Selective Re-sampling 

 Re-sampling is dangerous, since important 
samples might get lost 
(particle depletion problem) 

 

 In case of suboptimal proposal 
distributions re-sampling is necessary to 
achieve convergence. 

 

 Key question: When should we re-sample? 
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Number of Effective Particles 

 Empirical measure of how well the goal distribution 
is approximated by samples  
drawn from the proposal 

 neff describes “the variance of the particle weights” 

 neff is maximal for equal weights. In this case, the 

distribution is close to the proposal 
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Resampling with 

 If our approximation is close to the 
proposal, no resampling is needed 
 

 We only re-sample when neff drops below a 

given threshold (n/2) 
 

 See [Doucet, ’98; Arulampalam, ’01] 
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Typical Evolution of neff 

visiting new 
areas closing the 

first loop 

second loop closure 

visiting 
known areas 
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Intel Lab 

 15 particles 

 four times faster 
than real-time 
P4, 2.8GHz 

 5cm resolution 
during scan 
matching 

 1cm resolution in 
final map 
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Intel Lab 

 15 particles 

 Compared to 
FastSLAM with 
Scan-Matching,  
the particles are 
propagated 
closer to the true 
distribution  
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Outdoor Campus Map 

 30 particles 

 250x250m2 

 1.75 km 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 
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Outdoor Campus Map - Video 
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MIT Killian Court 

 The “infinite-corridor-dataset” at MIT 
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MIT Killian Court 
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MIT Killian Court - Video 


