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Motivation 

Goal: Find local transformation to align points 
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The Problem 

§  Given two corresponding point sets: 

§  Wanted: Translation t and rotation R that 
minimize the sum of the squared errors:   

 Here,
    

are corresponding points and
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Key Idea 
§  If the correct correspondences are known, 

the correct relative rotation/translation can 
be calculated in closed form 
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Center of Mass 

and 

are the centers of mass of the two point sets 

Idea: 
§  Subtract the corresponding center of mass 

from every point in the two point sets 
before calculating the transformation 

§  The resulting point sets are: 

and 
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Singular Value Decomposition 

Let  

denote the singular value decomposition (SVD) of W 
by: 
 

where  are unitary, and 

are the singular values of W  
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SVD 
Theorem (without proof): 
 
If rank(W) = 3, the optimal solution of E(R,t) is 
unique and is given by: 
 

The minimal value of error function at (R,t) is: 
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ICP with Unknown Data Association 

§  If the correct correspondences are not 
known, it is generally impossible to 
determine the optimal relative rotation and 
translation in one step 
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Iterative Closest Point (ICP) 
Algorithm 

§  Idea: Iterate to find alignment 
§  Iterative Closest Points  

[Besl & McKay 92] 

§  Converges if starting positions are  
“close enough” 

 



Basic ICP Algorithm 
§  Determine corresponding points 
§  Compute rotation R, translation t via SVD 
§  Apply R and t to the points of the set to be 

registered 
§  Compute the error E(R,t) 
§  If error decreased and error > threshold 

§  Repeat these steps 
§  Stop and output final alignment, otherwise 
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ICP Example 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences  
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Performance of Variants 
§  Various aspects of performance: 

§  Speed 

§  Stability (local minima) 
§  Tolerance wrt. noise and outliers 

§  Basin of convergence  
(maximum initial misalignment) 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association 
4. Rejecting certain (outlier) point pairs 
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Selecting Source Points 
§  Use all points 
§  Uniform sub-sampling 
§  Random sampling 
§  Feature based sampling 
§  Normal-space sampling 

(Ensure that samples have normals distributed as 
uniformly as possible) 
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Normal-Space Sampling 

uniform sampling normal-space sampling 
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Comparison 
§  Normal-space sampling better for mostly 

smooth areas with sparse features 
[Rusinkiewicz et al., 01] 

Random sampling Normal-space sampling 



18 

Comparison 
§  Normal-space sampling better for mostly 

smooth areas with sparse features 
[Rusinkiewicz et al., 01] 

Random sampling Normal-space sampling 

25

Result

Stability-based or normal-space sampling 
important for smooth areas with small features

Random sampling Normal-space sampling
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Feature-Based Sampling 

3D Scan (~200.000 Points) Extracted Features (~5.000 Points) 

§  Try to find “important” points 
§  Decreases the number of correspondences to find 
§  Higher efficiency and higher accuracy  
§  Requires preprocessing 
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ICP Application  
(With Uniform Sampling) 

[Nuechter et al., 04] 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Weighting 
§  Select a set of points for each set 

§  Match the selected points of the two sets 

§  Weight the corresponding pairs 

§  E.g., assign lower weights for points with 
higher point-point distances 

§  Determine transformation that minimizes 
the error function 
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Selection vs. Weighting 
§  Could achieve same effect with weighting 
§  Hard to guarantee that enough samples of 

important features except at high sampling 
rates 

§  Weighting strategies turned out to be 
dependent on the data 

§  Preprocessing / run-time cost tradeoff (how 
to find the correct weights?) 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Data Association 
§  Has greatest effect on convergence and 

speed 
§  Matching methods: 

§  Closest point  

§  Normal shooting 

§  Closest compatible point 

§  Projection-based 



26 

Closest-Point Matching 
§  Find closest point in other the point set 

(using kd-trees) 

Generally stable, but slow convergence 
and requires preprocessing 
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Normal Shooting 
§  Project along normal, intersect other point 

set 

Slightly better convergence results than 
closest point for smooth structures, worse 
for noisy or complex structures 
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Closest Compatible Point 
§  Improves the two previous variants by 

considering the compatibility of the points 
§  Only match compatible points 
§  Compatibility can be based on  

§  Normals 
§  Colors 
§  Curvature 
§  Higher-order derivatives 
§  Other local features 
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Point-to-Plane Error Metric 
§  Minimize the sum of the squared distances 

between a point and the tangent plane at its 
correspondence point [Chen & Medioni 91] 

Technical Report TR04-004, Department of Computer Science, University of North Carolina at Chapel Hill, February 2004. 
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ABSTRACT 
The Iterative Closest Point (ICP) algorithm that uses the point-to-
plane error metric has been shown to converge much faster than 
one that uses the point-to-point error metric. At each iteration of 
the ICP algorithm, the change of relative pose that gives the 
minimal point-to-plane error is usually solved using standard 
nonlinear least-squares methods, which are often very slow. 
Fortunately, when the relative orientation between the two input 
surfaces is small, we can approximate the nonlinear optimization 
problem with a linear least-squares one that can be solved more 
efficiently. We detail the derivation of a linear system whose 
least-squares solution is a good approximation to that obtained 
from a nonlinear optimization.  

1 INTRODUCTION 
3D shape alignment is an important part of many applications. It 
is used for object recognition in which newly acquired shapes in 
the environment are fitted to model shapes in the database. For 
reverse engineering and building real-world models for virtual 
reality, it is used to align multiple partial range scans to form 
models that are more complete. For autonomous range 
acquisition, 3D registration is used to accurately localize the range 
scanner, and to align data from multiple scans for view-planning 
computation. 

Since its introduction by Besl and McKay [Besl92], the ICP 
(Iterative Closest Point) algorithm has become the most widely 
used method for aligning three-dimensional shapes (a similar 
algorithm was also introduced by Chen and Medioni [Chen92]). 
Rusinkiewicz and Levoy [Rusinkiewicz01] provide a recent 
survey of the many ICP variants based on the original ICP 
concept. 

In the ICP algorithm described by Besl and McKay [Besl92], each 
point in one data set is paired with the closest point in the other 
data set to form correspondence pairs. Then a point-to-point error 
metric is used in which the sum of the squared distance between 
points in each correspondence pair is minimized. The process is 
iterated until the error becomes smaller than a threshold or it stops 
changing. On the other hand, Chen and Medioni [Chen92] used a 
point-to-plane error metric in which the object of minimization is 
the sum of the squared distance between a point and the tangent 
plane at its correspondence point. Unlike the point-to-point 
metric, which has a closed-form solution, the point-to-plane 
metric is usually solved using standard nonlinear least squares 
methods, such as the Levenberg-Marquardt method [Press92]. 
Although each iteration of the point-to-plane ICP algorithm is 
generally slower than the point-to-point version, researchers have 
observed significantly better convergence rates in the former 
[Rusinkiewicz01]. A more theoretical explanation of the 
convergence of the point-to-plane metric is described by Pottmann 
et al [Pottmann02]. 

In [Rusinkiewicz01], it was suggested that when the relative 
orientation (rotation) between the two input surfaces is small, one 
can approximate the nonlinear least-squares optimization problem 
with a linear one, so as to speed up the computation. This 
approximation is simply done by replacing sin θ by θ and cos θ by 
1 in the rotation matrix. 

In this technical report, we describe in detail the derivation of a 
system of linear equations to approximate the original nonlinear 
system, and demonstrate how the least-squares solution to the 
linear system can be obtained using SVD (singular value 
decomposition). A 3D rigid-body transformation matrix is then 
constructed from the linear least-squares solution. 

2 POINT-TO-PLANE ICP ALGORITHM 
Given a source surface and a destination surface, each iteration of 
the ICP algorithm first establishes a set of pair-correspondences 
between points in the source surface and points in the destination 
surfaces. For example, for each point on the source surface, the 
nearest point on the destination surface is chosen as its 
correspondence [Besl92] (see [Rusinkiewicz01] for other 
approaches to find point correspondences). The output of an ICP 
iteration is a 3D rigid-body transformation M that transforms the 
source points such that the total error between the corresponding 
points, under a certain chosen error metric, is minimal. 

When the point-to-plane error metric is used, the object of 
minimization is the sum of the squared distance between each 
source point and the tangent plane at its corresponding destination 
point (see Figure 1). More specifically, if si = (six, siy, siz, 1)T is a 
source point, di = (dix, diy, diz, 1)T is the corresponding destination 
point, and ni = (nix, niy, niz, 0)T is the unit normal vector at di, then 
the goal of each ICP iteration is to find Mopt such that 

( )( )∑ •−⋅=
i

iii
2

opt minarg ndsMM M
 

(1)

where M and Mopt are 4×4 3D rigid-body transformation matrices. 

 

 

 

 

 

 

 

 

 

 Figure 1: Point-to-plane error between two surfaces. 
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Point-to-Plane Error Metric 
§  Solved using standard nonlinear least 

squares methods (e.g., Levenberg-
Marquardt method [Press92]). 

§  Each iteration generally slower than the 
point-to-point version, however, often 
significantly better convergence rates 
[Rusinkiewicz01] 

§  Using point-to-plane distance instead of 
point-to-point lets flat regions slide along 
each other [Chen & Medioni 91] 
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Projection 
§  Finding the closest point is the most 

expensive stage of the ICP algorithm 
§  Idea: Simplified nearest neighbor search 
§  For range images, one can project the 

points according to the view-point [Blais 95] 
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Projection-Based Matching 

§  Constant time 

§  Does not require pre-computing a special 
data structure 

§  Requires point-to-plane error metric 

§  Slightly worse alignments per iteration 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Rejecting (Outlier) Point Pairs 
§  Corresponding points with point to point 

distance higher than a given threshold 
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Rejecting (Outlier) Point Pairs 
§  Corresponding points with point to point 

distance higher than a given threshold 
§  Rejection of pairs that are not consistent 

with their neighboring pairs [Dorai 98] 
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Rejecting (Outlier) Point Pairs 
§  Corresponding points with point to point 

distance higher than a given threshold 
§  Rejection of pairs that are not consistent 

with their neighboring pairs  [Dorai 98] 

§  Sort all correspondences with respect to 
their error and delete the worst t%, 
Trimmed ICP (TrICP) [Chetverikov et al. 02] 
§  t is used to estimate the overlap 

§  Problem: Knowledge about the overlap is 
necessary or has to be estimated 
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Rejecting (Outlier) Point Pairs 
§  Sort all correspondences with respect to 

their error and delete the worst t%, 
Trimmed ICP (TrICP) [Chetverikov et al. 2002] 

§  t is used to estimate the overlap 

Problem: Knowledge about the 
overlap is necessary or has to 
be estimated 



Summary: ICP Algorithm 
§  Potentially sample Points 
§  Determine corresponding points 
§  Potentially weight / reject pairs 
§  Compute rotation R, translation t (e.g. SVD) 
§  Apply R and t to all points of the set to be 

registered 
§  Compute the error E(R,t) 
§  If error decreased and error > threshold 

§  Repeat to determine correspondences etc. 
§  Stop and output final alignment, otherwise 
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ICP Summary 
§  ICP is a powerful algorithm for calculating 

the displacement between scans 
§  The major problem is to determine the 

correct data associations 
§  Convergence speed depends on point 

matched points 
§  Given the correct data associations, the 

transformation can be computed efficiently 
using SVD 

§  ICP does not always converge 


