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Motion Planning 

Latombe (1991):  
“… is eminently necessary since, by definition, a 
robot accomplishes tasks by moving in the real 
world.” 

Goals: 
§  Collision-free trajectories 
§  Robot should reach the goal location as 

quickly as possible 

Optimality 
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 … in Dynamic Environments 
§  How to react to unforeseen obstacles? 

§  efficiency 
§  reliability 

§  Dynamic Window Approaches 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

§  Grid map based planning 
[Konolige, 00] 

§  Nearness Diagram Navigation 
[Minguez at al., 2001, 2002] 

§  Vector-Field-Histogram+ 
 [Ulrich & Borenstein, 98]  

§  A*, D*, D* Lite, ARA*, … 
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Two Challenges 
§  Calculate the optimal path taking potential 

uncertainties in the actions into account 

§  Quickly generate actions in the case of 
unforeseen objects 
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Classic Two-Layered Architecture 

Planning 

Collision 
Avoidance 

sensor data 

map 

robot 

low frequency 

high frequency 

sub-goal 

motion command 
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Dynamic Window Approach 

§  Collision avoidance: Determine collision-
free trajectories using geometric operations 

§  Here: Robot moves on circular arcs 
§  Motion commands (v,ω) 
§  Which (v,ω) are admissible and reachable? 
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Admissible Velocities 
§  A speed is admissible if the robot is able to 

stop before colliding with an obstacle 
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Reachable Velocities 
§  Speeds that are reachable by acceleration 

within the time period t: 
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DWA Search Space 

§  Vs = all possible speeds of the robot 
§  Va = obstacle free area 
§  Vd = speeds reachable within a certain time frame based on  

  possible accelerations 



10 

Dynamic Window Approach 

§  How to choose <v,ω>? 
§  Steering commands are chosen by a 

heuristic navigation function 

§  This function tries to minimize the travel-
time by: 
“driving fast in the right direction”  
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Dynamic Window Approach 
§  Heuristic navigation function 
§  Planning restricted to <x,y>-space 
§  No planning in the velocity space 

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 
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goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 

Maximizes 
velocity. 

§  Heuristic navigation function 
§  Planning restricted to <x,y>-space 
§  No planning in the velocity space 

Dynamic Window Approach 
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goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 

Considers cost to 
reach the goal. 

Maximizes 
velocity. 

§  Heuristic navigation function 
§  Planning restricted to <x,y>-space 
§  No planning in the velocity space 

Dynamic Window Approach 
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goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 

Maximizes 
velocity. 

Considers cost to 
reach the goal. 

Follows grid based path 
computed by A*. 

§  Heuristic navigation function 
§  Planning restricted to <x,y>-space 
§  No planning in the velocity space 

Dynamic Window Approach 
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Navigation Function: [Brock & Khatib, 99] Goal nearness. 

Follows grid based path 
computed by A*. 

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
Maximizes 
velocity. 

Considers cost to 
reach the goal. 

§  Heuristic navigation function 
§  Planning restricted to <x,y>-space 
§  No planning in the velocity space 

Dynamic Window Approach 
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Dynamic Window Approach 
§  Reacts quickly 
§  Low CPU power requirements 
§  Guides a robot on a collision-free path 
§  Successfully used in a lot of real-world 

scenarios 

§  Resulting trajectories sometimes sub-
optimal 

§  Local minima might prevent the robot from 
reaching the goal location 
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Problems of DWAs 

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
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Problems of DWAs 

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα

Robot‘s 
velocity.  
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Problems of DWAs  

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα

Preferred 
direction of NF. 

Robot‘s 
velocity.  
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Problems of DWAs  

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα



21 

Problems of DWAs  

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
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Problems of DWAs  

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα

§  The robot drives too fast at c0 to enter  
the corridor facing south. 
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Problems of DWAs  

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
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Problems of DWAs  

goalnfnfvelNF ⋅+Δ⋅+⋅+⋅= δγβα
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Problems of DWAs  

§  Same situation as in the beginning 

 è DWAs might not be able to reach the 
goal location. 



26 

Problems of DWAs  
§  Typical problem in a real world situation: 

§  Robot does not slow down early enough to 
enter the doorway 
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Robot Path Planning with A* 
§  Finds the shortest path 

§  Requires a graph structure  

§  Limited number of edges 

§  In robotics: Often planning 
using a 2D occupancy grid 
map 



Reminder: A* 
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§  g(n) = actual cost from the initial state to n 

§  h(n) = estimated cost from n to the next goal 

§  f(n) = g(n) + h(n), the estimated cost of the 
cheapest solution through n 

§  Let h*(n) be the actual cost of the optimal path 
from n to the next goal 

§  h is admissible if the following holds for all n : 

h(n) ≤ h*(n) 

§  A* yields the optimal path if h is admissible (the 
straight-line distance is admissible in the 
Euclidean Space) 
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Example: Path Planning with A* 
for Robots in a Grid-World 
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Deterministic Value Iteration 
§  To compute the shortest path from 

every state to one goal state, use 
(deterministic) value iteration 

§  Very similar to Dijkstra’s Algorithm 

§  Such a cost distribution is the optimal 
heuristic for A* 
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Typical Assumption in Robotics 
for A* Path Planning 

§  The robot is assumed to be localized 
§  The robot computes its path based on 

an occupancy grid 
§  Motion commands are executed 

accurately 

Is this always true? 
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Problems 

§  What if the robot is slightly delocalized? 
 

§  Moving on the shortest path guides  
often the robot on a trajectory close  
to obstacles 

§  Trajectory aligned to the grid structure 
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Convolution of the Grid Map 

§  Convolution blurs the map 

§  Obstacles are assumed to be bigger 
than in reality 

§  Perform an A* search in such a 
convolved map 

§  Robot increases distance to obstacles  
and moves on a short path! 
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Example: Map Convolution 

§  1-d environment, cells c0, …, c5 

§  Cells before and after 2 convolution runs 
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Convolution 
§  Consider an occupancy map. The 

convolution is defined as: 

§  This is done for each row and each 
column of the map 

§  “Gaussian blur” 
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A* in Convolved Maps 

§  The costs are a product of path length 
and occupancy probability of the cells 

§  Cells with higher probability (e.g., 
caused by convolution) are avoided  
by the robot 
 

§  Thus, it keeps distance to obstacles 

§  This technique is fast and quite reliable 
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5D-Planning – An Alternative to 
the Two-layered Architecture  

§  Plans in the full <x,y,θ,v,ω>-configuration 
space using A* 

è  Considers the robot's kinematic constraints 
 

§  Generates a sequence of steering 
commands to reach the goal location 

 

§  Maximizes trade-off between driving time 
and distance to obstacles 



38 

The Search Space (1) 

§  What is a state in this space? 
<x,y,θ,v,ω> =  current position and 

    velocities of the robot 
 
§  How does a state transition look like? 

<x1,y1,θ1,v1,ω1>     <x2,y2,θ2,v2,ω2>  
 with motion command (v2,ω2) and 
 |v1-v2| < av, |ω1-ω2| < aω 

§  Pose of the robot is a result of the motion 
equations   
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The Search Space (2) 

Idea: Search in the discretized 
<x,y,θ,v,ω>-space 

 
Problem: The search space is too huge to 

be explored within the time constraints  
(5+ Hz for online motion plannig) 

 
Solution: Restrict the full search space 
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The Main Steps of Our Algorithm 

1.  Update (static) grid map based on 
sensory input 
 

2.  Use A* to find a trajectory in the <x,y>-
space using the updated grid map 
 

3.  Determine a restricted 5d-configuration 
space based on step 2 
 

4.  Find a trajectory by planning in the 
restricted <x,y,θ,v,ω>-space 
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Updating the Grid Map 

§  The environment is represented as 
a 2d-occupency grid map 

§  Convolution of the map increases 
security distance 

§  Detected obstacles are added 
§  Cells discovered free are cleared 

update 



42 

Find a Path in the 2d-Space 

§  Use A* to search for the optimal path in the 
2d-grid map 

 

§  Use heuristic based on a deterministic 
value iteration within the static map 
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Restricting the Search Space 

Assumption: The projection of the optimal 
5d-path onto the <x,y>-space lies close 
to the optimal 2d-path 

 
Therefore: Construct a restricted search 

space (channel) based on the 2d-path 
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Space Restriction 

§  Resulting search space =  
 <x, y, θ, v, ω> with (x,y) Є channel 

§  Choose a sub-goal lying on the 2d-path 
within the channel 
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Find a Path in the 5d-Space 
 
§  Use A* in the restricted 5d-space to find a 

sequence of steering commands to reach 
the sub-goal 

 
§  To estimate cell costs: Perform a 

deterministic 2d-value iteration within the 
channel 
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Examples 
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Timeouts 

§   Steering a robot online requires to set a 
 new steering command every .25 secs 

 
è   Abort search after .25 secs. 
  

How to find an admissible steering 
command? 
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Alternative Steering Command 

§  Previous trajectory still admissible? 
 è OK 

 
§  If not, drive on the 2d-path or use 

DWA to find new command 
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Timeout Avoidance 

è  Reduce the size of the channel if 
the 2d-path has high cost 
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Example 

Robot Albert Planning state 
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Comparison to the DWA (1) 

§  DWAs often have problems entering narrow 
passages 

DWA planned path. 5D approach. 
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Comparison to the DWA (2)  

 The presented approach results in 
significantly faster motion when  
driving through narrow passages! 
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Comparison to the Optimum 

Channel: with length=5m, width=1.1m 
Resulting actions are close to the optimal solution 
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Summary 
§  Robust navigation requires combined path 

planning & collision avoidance 
§  Approaches need to consider robot's kinematic 

constraints and plans in the velocity space 
§  Combination of search and reactive techniques 

show better results than the pure DWA in a 
variety of situations 

§  Using the 5D-approach the quality of the 
trajectory scales with the computational 
resources available 

§  The resulting paths are often close to the 
optimal ones 
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What’s Missing? 

§  More complex vehicles (e.g., cars). 

§  Moving obstacles, motion prediction. 

§  Path planning 

§  … 


