Introduction to
Mobile Robotics

Information Driven
Exploration

Wolfram Burgard, @ Maren Bennewitz,

Diego Tipaldi, Luciano Spinello

UNI

FREIBURG



Tasks of Mobile Robots

SLAM
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Exploration and SLAM

A SLAM is typically passive , because it
consumes incoming sensor data

A Exploration actively guides the robot to
cover the environment with its sensors

A Exploration in combination with SLAM:
Acting under pose and map
uncertainty

A Uncertainty should/needs to be taken into
account when selecting an action



Mapping with Rao - Blackwellized
Particle Filter (Brief Summary)

A Each particle represents a possible
trajectory of the robot

A Each particle
A maintains its own map and

Aupdates it upon  mapping with known
poses

A Each particle survives with a probability
proportional to the likelihood of the
observations relative to its own map



Factorization Underlying
Rao - Blackwellized Mapping

poses map observations & odometry
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Mapping with known poses

Particle filter representing trajectory hypotheses



Example: Particle Filter for Mapping
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Combining Exploration and SLAM

SLAM . .
mapping localization

iIntegrated
approaches
active
localization
exploration

path planning



Exploration

A SLAM approaches seen so far are
purely passive

A By reasoning about control, the
mapping process can be made
much more effective

A Question: Where to move next?



Where to Move Next?
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Decision -Theoretic Approach

A Learn the map using a Rao  -Blackwellized
particle filter

A Consider a set of potential actions

A Apply an exploration approach that
minimizes the overall uncertainty

Utility = uncertainty reduction - cost
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expected utility
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The Uncertainty of a Posterior

A Entropy is a general measure for the
uncertainty of a posterior

HX) = — /x p(X = x)log p(X = x) dx
= Ex[—log(p(X))]

A Conditional Entropy

HX|Y) = /yp<Y YH(X | Y =) dy
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Mutual Information

A Expected Information Gain or Mutual
Information = Expected Uncertainty
Reduction

I(X;Y) = HX)—H(X|Y)

I(X:Y) = H(Y)—H(Y|X)
[(X;Y|z=c,) = HX|z=c)—HX|Y,z=1cy)

I(X:Y|Z) = HX|Z)—-H(X|Y,Z)
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Entropy Computation
H(X,Y)

Ex y|—logp(X,Y)]
Ex y[—log(p(X) p(Y | X))]
EX,Y'—IOgP(X)HEX y[—logp(Y | X)]

HX)+ | —p(y)logp(y|x) dxds

—I—/ —p(y x)logp(y | x) dx dy
X)+ [ plx / ¥)logp(y |y) dy dx
H(X) —I—/ HY |X=x)d

H(X)+H(Y | X)
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The Uncertainty of the Robot

A The uncertainty of the RBPF:

H(X,M) = —I—/ M| X =x)dx

i
#particles . . .
HX.M) = HX)+ Y  ollamll) xli= )

e

trajectory particle map
uncertainty weights uncertainty



Computing the Entropy of the
Map Posterior

Occupancy Grid map m:

- Z p(c)logp(c (c))log(1—p(c))

\ cEM

map

uncertainty grld cells  probability that the

cell Is occupied
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Map Entropy

Low entropy

probability
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The overall entropy is the sum of the individual entropy values
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Computing the Entropy of the
Trajectory Posterior

1. High-dimensional Gaussian
H(@ (X)) = log((2me)™/?)|2)

reduced rank for sparse particle sets

2. Grid -based approximation
H(X) ~~» const.

for sparse particle clouds
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Approximation of the
Trajectory Posterior Entropy

Average pose entropy over time:

H(Xlzt ‘ d) ~

trajectory uncertainty
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Mutual Information

A The mutual information | Is given by the
expected reduction  of entropy inthe  belief

action to be carried out

|

[(X,M;Z%) =  uncertainty of the filter |

uncertainty of the filter
after carrying out action a



Integrating Over Observations

A Computing the mutual information requires
to integrate over potential observations

I(X.M;Z") =H(X,M)—H(X,M | Z%
J
—

H(X.M | Z%) = /p(z QH(X.M | Z° = 7) dz

<
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potential observation
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Approximating the Integral

A The particle filter represents a posterior
about possible maps

map of particle 1 map of particle 2 map of particle 3
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Approximating the Integral

A The particle filter represents a posterior
about possible maps

A Simulate laser measurements in the maps
of the particles

HX M|z =) p(z|a)H(X,M|Z*=z)

/ Z \
measurement seguences likelihood
simulated in the maps (particle weight)
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Simulating Observations

A Ray-casting in the map of each particle
to generate observation sequences
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The Utility

A We take into account the cost of an action:
mutual information ity U

A Select the action with the highest utility
a* = argmaxI(X,M;Z%) — cost(a)
a




Focusing on Specific Actions
To efficiently sample actions we consider
A exploratory actions (1 -3)

A loop closing actions (4) and

A place revisiting actions (5)
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Dual Representation
for Loop Detection

A Trajectory graph ( topological map )
stores the path traversed by the robot

A Occupancy grid map represents the space
covered by the sensors

A Loops correspond to long paths in the
trajectory graph and short paths in the grid
map
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Example: Trajectory Graph
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Application Example
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Example: Possible Targets
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Example: Evaluate Targets
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expected utiliy

Example: Move Robot to Target
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Example: Evaluate Targets
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Example: Move Robot
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Example:

Entropy Evolution

‘combined ent;’mpyr —
map entropy -
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Comparison

Map uncertainty only:

After loop closing action:
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