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Probabilistic  
Robotics 
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Probabilistic Robotics 

Key idea: Explicit representation of 

uncertainty  
(using the calculus of probability theory) 

 

 Perception  = state estimation 

 Action       = utility optimization 
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Bayes Formula 

evidence

prior likelihood
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Simple Example of State Estimation 

 Suppose a robot obtains measurement z 

 What is P(open|z)? 
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Causal vs. Diagnostic Reasoning 

 P(open|z) is diagnostic. 

 P(z|open) is causal. 

 Often causal knowledge is easier to 
obtain. 

 Bayes rule allows us to use causal 
knowledge: 
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Bayes Filters 
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Bayes Filters are Familiar! 

 Kalman filters 

 Particle filters 

 Hidden Markov models 

 Dynamic Bayesian networks 

 … 
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Sensor and 
Motion Models 
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Motion Models  

 Robot motion is inherently uncertain. 

 How can we model this uncertainty? 
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Probabilistic Motion Models 

 To implement the Bayes Filter, we 
need the transition model p(x | x’, u). 

 The term p(x | x’, u) specifies a posterior 
probability, that action u carries the 
robot from x’ to x. 
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Typical Motion Models 

 In practice, one often finds two types of 

motion models: 

 Odometry-based 

 Velocity-based (dead reckoning) 

 Odometry-based models are used when 

systems are equipped with wheel encoders. 

 Velocity-based models have to be applied 
when no wheel encoders are given.  

 They calculate the new pose based on the 

velocities and the time elapsed. 
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Odometry Model 
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Sensors for Mobile Robots 

 Contact sensors: Bumpers 

 Internal sensors 

 Accelerometers (spring-mounted masses) 

 Gyroscopes (spinning mass, laser light) 

 Compasses, inclinometers (earth magnetic field, gravity) 

 Proximity sensors 

 Sonar (time of flight) 

 Radar (phase and frequency) 

 Laser range-finders (triangulation, tof, phase) 

 Infrared (intensity) 

 Visual sensors: Cameras 

 Satellite-based sensors: GPS 
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Beam-based Sensor Model 

 Scan z consists of K measurements. 

 

 

 Individual measurements are independent 

given the robot position. 
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Beam-based Proximity Model 

Measurement noise 
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Beam-based Proximity Model 

Random measurement Max range 
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Resulting Mixture Density 
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How can we determine the model parameters? 
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 Bayes Filter 
in Robotics 
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Bayes Filters in Action 

 Discrete filters 

 Kalman filters 

 Particle filters 
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Discrete Filter 

 The belief is typically stored in a 
histogram / grid representation 

 To update the belief upon sensory 
input and to carry out the 
normalization one has to iterate over 
all cells of the grid 
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Piecewise  
Constant 
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Kalman Filter 

 Optimal for linear Gaussian systems! 

 

 Most robotics systems are nonlinear! 

 

 Polynomial in measurement 
dimensionality k and state 
dimensionality n:  
 
             O(k2.376 + n2)  

 



Kalman Filter Algorithm  

1.  Algorithm Kalman_filter( t-1, t-1, ut, zt): 

2.  Prediction: 

3.        

4.    
 

5.  Correction: 

6.        

7.   

8.   

9.  Return t, t       

  

mt = Atmt-1 + Btut

  

St = AtSt-1At
T +Qt

  

Kt = StCt
T (CtStCt

T + Rt )
-1

  

mt = mt +Kt (zt -Ctmt )

  

St = (I -KtCt )St
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Extended Kalman Filter 

 Approach to handle non-linear models 

 Performs a linearization in each step 

 Not optimal 

 Can diverge if nonlinearities are large! 

 Works surprisingly well even when all 
assumptions are violated! 

 Same complexity than the KF 
             



Particle Filter  

 Basic principle 

 Set of state hypotheses (“particles”) 

 Survival-of-the-fittest 

 

 Particle filters are a way to efficiently 

represent  

non-Gaussian distribution 
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Mathematical Description 

27 

 Set of weighted samples 

 

 

 

 

 

 The samples represent the posterior 

 

State hypothesis Importance weight 
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Particle Filter Algorithm in Brief 

 Sample the next generation for particles 

using the proposal distribution 

 

 Compute the importance weights : 

weight = target distribution / proposal distribution 

 

 Resampling: “Replace unlikely samples by 

more likely ones” 
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 We can even use a different distribution g to 

generate samples from f 

 By introducing an importance weight w, we can 

account for the “differences between g and f ” 

 w = f / g 

 f is often called 

target 

 g is often called 

proposal 

 Pre-condition: 

 f(x)>0  g(x)>0 

Importance Sampling Principle 
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Particle Filter Algorithm 
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w2 

w3 

w1 wn 

Wn-1 

Resampling 

w2 

w3 

w1 wn 

Wn-1 

 Roulette wheel 

 Binary search, n log n 

 Stochastic universal sampling 

 Systematic resampling 

 Linear time complexity 

 Easy to implement, low variance 
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MCL Example 
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 Mapping 



Why Mapping? 

 Learning maps is one of the fundamental 

problems in mobile robotics 

 Maps allow robots to efficiently carry out 
their tasks, allow localization … 

 Successful robot systems rely on maps for 

localization, path planning, activity planning 

etc 
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Occupancy Grid Maps 

 Discretize the world into equally 
spaced cells 

 Each cells stores the probability that 
the corresponding area is occupied by 
an obstacle 

 The cells are assumed to be 
conditionally independent 

 If the pose of the robot is know, 
mapping is easy 
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Updating Occupancy Grid Maps 

 Update the map cells using the inverse 

sensor model 

 

 
 

 Or use the log-odds representation 
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Reflection Probability Maps 

 Value of interest: P(reflects(x,y))  

 For every cell count 
 hits(x,y): number of cases where a beam 

ended at <x,y> 

 misses(x,y): number of cases where a 

beam passed through <x,y> 
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 SLAM 
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 Given: 

 The robot’s controls 

 Observations of nearby features 

 Estimate: 

 Map of features 

 Path of the robot 

The SLAM Problem 

A robot is exploring an 

unknown, static environment. 



Chicken-or-Egg 

 SLAM is a chicken-or-egg problem 

 A map is needed for localizing a robot 

 A good pose estimate is needed to build a map 

 Thus, SLAM is regarded as a hard problem 

in robotics 

 A variety of different approaches to address 
the SLAM problem have been presented 

 Probabilistic methods outperform most 

other techniques 
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SLAM:  
Simultaneous Localization and Mapping 

 Full SLAM: 

 

 

 Online SLAM: 

 

 
Integrations typically done one at a time  

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( ttttttt dxdxdxuzmxpuzmxp 

Estimates most recent pose and 
map! 

Estimates entire path and map! 
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Why is SLAM a hard problem? 

 In the real world, the mapping between 

observations and landmarks is unknown 

 Picking wrong data associations can have 
catastrophic consequences 

 Pose error correlates data associations 

Robot pose 

uncertainty 
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 Map with N landmarks:(3+2N)-dimensional 
Gaussian 

 

 

 

 

 

 

 

 Can handle hundreds of dimensions 

(E)KF-SLAM 
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EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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FastSLAM 

 Use a particle filter for map learning 

 Problem: the map is high-dimensional 

 Solution: separate the estimation of 
the robot’s trajectory from the one of 
the map of the environment 

 This is done by means of a 
factorization in the SLAM posterior 
often called Rao-Blackwellization 
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Rao-Blackwellization 

SLAM posterior 

Robot path posterior 

Mapping with known poses 

Factorization first introduced by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellized Mapping 

 Each particle represents a possible 

trajectory of the robot 

 

 Each particle  

 maintains its own map and  

 updates it upon “mapping with known 

poses” 

 

 Each particle survives with a probability 

proportional to the likelihood of the 
observations relative to its own map 
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FastSLAM 
 Rao-Blackwellized particle filtering based on 

landmarks      

 Each landmark is represented by a 2x2  

Extended Kalman Filter (EKF) 

 Each particle therefore has to maintain M EKFs 

Landmark 1 Landmark 2 Landmark M … x, y,  

Landmark 1 Landmark 2 Landmark M … x, y,  
Particle 

#1 

Landmark 1 Landmark 2 Landmark M … x, y,  
Particle 

#2 

Particle 

N 

…
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Grid-based FastSLAM 

 Similar ideas can be used to learn grid maps 

 To obtain a practical solution, an efficiently 

computable, informed proposal distribution 
is needed 

 Idea: in the SLAM posterior, the observation 

model dominates the motion model (given 

an accurate sensor) 
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Proposal Distribution 

Approximate this equation by a Gaussian: 

Sampled points around  
the maximum 

maximum reported 
by a scan matcher 

Gaussian  
approximation 

Draw next 
generation of 
samples 
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Typical Results 
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Robot Motion 
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Robot Motion Planning 

Latombe (1991):  
 

“…eminently necessary since, by definition, a 

robot accomplishes tasks by moving in the real 

world.” 

Goals: 

 Collision-free trajectories. 

 Robot should reach the goal location as 

fast as possible. 
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Two Challenges 

 Calculate the optimal path taking 
potential uncertainties in the actions 
into account 

 

 Quickly generate actions in the case of 
unforeseen objects 
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Classic Two-layered Architecture 

Planning 

Collision 

Avoidance 

sensor data 

map 

robot 

low frequency 

high frequency 

sub-goal 

motion command 
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Information Gain-based 
Exploration 

 SLAM is typically passive, because it 

consumes incoming sensor data 

 Exploration actively guides the robot to 

cover the environment with its sensors 

 Exploration in combination with SLAM: 

Acting under pose and map uncertainty 

 Uncertainty should/needs to be taken into 

account when selecting an action 

 Key question: Where to move next? 

 



Mutual Information 

 The mutual information I is given by the 

reduction of entropy in the belief 

 

action to be carried 
out 

“uncertainty of the filter” – 
  

“uncertainty of the filter 
 after carrying out action a” 



Integrating Over Observations 

 Computing the mutual information requires 

to integrate over potential observations 

 

potential observation  
sequences 
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Summary on Information Gain-
based Exploration 

 A decision-theoretic approach to 
exploration in the context of RBPF-SLAM 

 The approach utilizes the factorization of 
the Rao-Blackwellization to efficiently 
calculate the expected information gain 

 Reasons about measurements obtained 

along the path of the robot 

 Considers a reduced action set consisting 
of exploration, loop-closing, and place-
revisiting actions 
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The Exam is Approaching… 

 This lecture gave a short overview over the 

most important topics addressed in this 

course 

 For the exam, you need to know at least the 

basic formulas (e.g., Bayes filter, MCL eqs., 

Rao-Blackwellization, entropy, …) 

 

Good luck for the exam! 


