Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi University of Freiburg Department of Computer Science

Winter semester 2014/2015

Exercise Sheet 3

Due: 20th November 2014

Exercise 3.1 (Regular languages, Pumping lemma)

Are the following languages regular? Prove it.

- (a) $L := \{a^i b^j a^{ij} \mid i, j \ge 0\}.$
- (b) $L := \{b^2 a^n b^m a^3 \mid m, n \ge 0\}.$
- (c) $L := \{a^{k^3} \mid k \ge 0\}.$

Exercise 3.2 (Pumping Lemma)

Find the minimum pumping length of the languages $L(\mathcal{R})$ where

- (a) $\mathcal{R} = \mathcal{R}_1 := 0^* 101^*$.
- (b) $\mathcal{R} = \mathcal{R}_2 := 10^*1$.
- (c) $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$.

Exercise 3.3 (Context-free languages)

- (a) Provide a context-free grammar $G=(V,\Sigma,R,S)$ that generates the language of palindromes over an alphabet Ξ .
- (b) Prove that $L(G) = L_{pal}$.
- (c) Consider the context-free grammar $(\{X,Y\},\{0,1\},R,X)$ where R is defined as follows

$$X \to \epsilon \mid 1$$
,

$$X \rightarrow 1 X 1 \mid Y$$

$$Y \to \epsilon \mid 0$$
,

$$Y \rightarrow 0 Y 0$$
.

Which language does this context-free grammar generate?