Exercise 7.1 (Decidable Languages)
Let L and L' be decidable languages. Prove the following properties.

(a) The complement \overline{L} is decidable.
(b) The union $L \cup L'$ is decidable.

Exercise 7.2 (Decidable Languages)
Show that the following languages are decidable:

(a) $EQ_{DFA,RE} = \{ \langle D, R \rangle \mid D$ is a DFA and R is a regular expression and $L(D) = L(R) \}$
(b) $A_{\epsilon, CFG} = \{ \langle G \rangle \mid G$ is a CFG that generates $\epsilon \}$
(c) $ALL_{DFA} = \{ \langle A \rangle \mid A$ is a DFA that recognizes $\Sigma^* \}$

Exercise 7.3 (Undecidable Languages)
Consider the problem of determining whether a two-tape Turing machine ever writes a non-blank symbol on its second tape, i.e.

$$N = \{ \langle M, w \rangle \mid M$ is a two-tape Turing machine which writes a non-blank symbol onto its second tape when it runs on $w \}.$$

Show that N is undecidable.

Hint: Use a reduction from A_{TM}.