Exercise 8.1 (Runtime)
You have implemented an algorithm that needs exactly \(f(n) \) steps to terminate, where \(n \) is the size of the input. Assume that on your machine each step takes \(1 \mu s \).
For which maximal input size does your algorithm terminate within one day? Which input size can it maximally process in 10 days? Answer these (two!) questions for the following runtimes:

(a) \(f(n) = n \)
(b) \(f(n) = n^2 \)
(c) \(f(n) = 2^n \)
(d) \(f(n) = n^2 + n \)
(e) (Extra, not mandatory) \(f(n) = n \log n \)

Hint: To compute the value of \(f^{-1} \), you can implement the bisection method.

Exercise 8.2 (Big-O)
Consider the Turing machine below. The input alphabet is \(\Sigma = \mathbb{N} = \{1, 2, 3, \ldots\} \). The operator \(|w| \) denotes the length of the string \(w \), the relation \(< \) is the smaller relation on the natural numbers.

\[
M = \text{On input string } w: \\
\text{for } i = 1 \text{ to } |w| \\
\text{for } j = |w| \text{ downto } i + 1 \\
\text{if } w_j < w_{j-1} \\
\text{swap } w_j \text{ and } w_{j-1} \\
\text{endif} \\
\text{endfor} \\
\text{endfor}
\]

Assume that the runtime of a swap and of a comparison of two natural numbers is constant.

(a) What is the smallest exponent \(k \in \mathbb{R} \) so that the runtime of the Turing machine \(M \) is in \(O(|w|^k) \)? Justify your answer.

(b) What does \(M \) compute (i.e. what is written on the tape when \(M \) halts)?

Exercise 8.3 (Big-O)
Characterise the relationship between \(f(n) \) and \(g(n) \) in the following examples using the \(O, \Theta \) or \(\Omega \)-notation.

1. \(f(n) = n^{0.99998} \) \(g(n) = \sqrt{n} \)
2. \(f(n) = 2^\log^2(n) \) \(g(n) = \sum_{k=1}^{n^2} \frac{n}{2^k} \)
3. \(f(n) = n \cdot \log_2 n \) \(g(n) = \sqrt{n} \)
4. \(f(n) = \sqrt{n} \) \(g(n) = 1000n \)
5. (Extra, not mandatory) \(f(n) = \frac{n^{n+1}}{(n+1)!}, g(n) = \sqrt{n!} \)

Hint: Stirling’s approximation could be useful here.