Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 9 Due: 15th January 2014

Exercise 9.1 (P)

- (a) Show that P is closed under union, complement, and concatenation.
- (b) The complexity class coP contains all languages L whose complement is in P. Formally, $coP = \{L \mid \overline{L} \in P\}$. Is P = coP?

Exercise 9.2 (Reduction)

Given an undirected graph $\mathcal{G} := \langle G, E \rangle$ and an integer number $0 \le k \le |G|$, the following NP-complete problems have been introduced in the lectures (see 07.pdf, slides 80-82-84):

- **Clique** : Does \mathcal{G} contain a *clique* of size at least k? That is, there exist a set $C \subseteq G$ so that $\langle u, v \rangle \in E$ for every $u, v \in C$ ($u \neq v$) and $|C| \geq k$?
- **IndSet** : Does \mathcal{G} contain an *independent set* whose size is at least k? In other words, does G admit a subset $I \subseteq G$ with $|I| \ge k$ and such that there exists no edge $\langle u, v \rangle$ whenever u, v lie in I?
- **VertexCover** : Does \mathcal{G} contain a *vertex cover* of size at most k? That is, is it possible to find a set $C \subseteq G$ so that $|C| \leq k$ and for every edge $\langle u, v \rangle \in E$, $u \in C$ or $v \in C$?

Prove the following statements:

- (a) Clique \leq_P IndSet **Hint:** consider the complement graph.
- (b) IndSet ≤_P VertexCover
 Hint: consider the relation between vertex covers and independent sets.