Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
University of Freiburg
F. Boniardi

Department of Computer Science
Winter Semester 2014/2015

Exercise Sheet 12
 Due: $5^{\text {th }}$ February 2015

Exercise 12.1 (Resolution)
Consider the knowledge base $K B=\{A, B \vee E \vee \neg D, K \wedge E \leftrightarrow A \wedge B, \neg C \rightarrow D, E \vee F \rightarrow \neg D\}$. Use resolution to prove that $K B \models A \wedge C$.
Hint: According to Contradiction Theorem, $K B \vDash A \wedge C$ iff $K B \cup\{\neg(A \wedge C)\}$ is unsatisfiable.

Exercise 12.2 (Predicate Logic,Terminology)
Classify the following expressions as terms, ground terms, atoms and formulae. If there is more than one possibility for an expression, please list them all. In the expressions, a and b are constant symbols, x and y are variable symbols, f and g are function symbols, and P and Q are relation symbols.
(a) $\mathrm{P}(x, y)$
(b) $f(a, b)$
(c) $\mathcal{I} \models \mathrm{P}(\mathrm{a}, \mathrm{f}(\mathrm{b}))$
(d) $\mathcal{I}, \alpha \models \mathrm{P}(\mathrm{a}, \mathrm{f}(x))$
(e) $\mathrm{f}(\mathrm{g}(x), \mathrm{b})$
(f) $\mathrm{Q}(x)$ is satisfiable.
(g) $\exists x(\mathrm{P}(x, y) \wedge \mathrm{Q}(x)) \vee \mathrm{P}(y, x)$
(h) $\forall x(\exists y(\mathrm{P}(x, y) \wedge \mathrm{Q}(x)) \vee \mathrm{P}(x, y))$
(i) $\forall x \forall y(\mathrm{P}(x, y) \wedge \mathrm{Q}(x) \vee \mathrm{P}(\mathrm{f}(y), x))$
(j) $\mathrm{Q}(x) \vee \mathrm{P}(x, y) \equiv \mathrm{P}(x, y) \vee \mathrm{Q}(x)$

Exercise 12.3 (Extra, Predicate Logic, Interpretation)
Consider the following set of formulae:

$$
K B=\left\{\begin{array}{l}
\forall x \neg \mathrm{P}(x, x) \\
\forall x \forall y \forall z((\mathrm{P}(x, y) \wedge \mathrm{P}(y, z)) \rightarrow \mathrm{P}(x, z)) \\
\forall x \forall y(\mathrm{P}(x, y) \vee(x=y) \vee \mathrm{P}(y, x))
\end{array}\right\}
$$

- Specify an interpretation $\mathcal{I}=\langle\mathcal{D}, \cdot \mathcal{I}\rangle$ with $\mathcal{D}=\left\{d_{1}, \ldots, d_{4}\right\}$ and prove that $\mathcal{I} \models K B$ (i.e., $\mathcal{I} \models \varphi$ for all $\varphi \in K B)$. Why is it not necessary to specify a variable assignment α to state a model of $K B$?

