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Exercise 3.1 (Regular languages, Pumping lemma)

Are the following languages regular? Prove it.

(a) L := {aibjaij | i, j ≥ 0}.

Solution:
The language is not regular. To show this, let’s suppose L to be a regular language with
pumping length p > 0. Furthermore, let’s consider the string w = apbpap

2

. It is apparent
that |w| ≥ p and w ∈ L. According to the pumping lemma, w = xyz where

– |xy| ≤ p.
– y 6= ε.

– xykz ∈ L for all k ∈ N0.

Consequently, xy0z = xz must belong to L. Since |xy| ≤ p and |y| > 0, then it is easy to see

that xy0z = ap−|y|bpap
2

is not a member of L. Thus, L is not regular.

(b) L := {b2anbma3 | m,n ≥ 0}.

Solution:
The Language is regular. Indeed, it can be expressed by the following regular expression:

R := b2a∗b∗a3.

(c) L := {ak3 | k ≥ 0}.

Solution:
The language is not regular. Again, let’s suppose that L is regular with pumping length
p > 0. The string w := ap

3

contradicts the pumping lemma. Indeed, if w = xyz so that
the statement of the pumping lemma holds, then it is easy to see that xykz = ap

3+(k−1)|y|.
However, if such y existed, then p3 + (k − 1)|y| = n(k)3 for every k ≥ 0, where n(k) ∈ N0

depends upon k, which is trivially false.

Exercise 3.2 (Pumping Lemma)

Find the minimum pumping length of the languages L(R) where

(a) R = R1 := 0∗101∗.

Solution:
The pumping length p must be grater than 2. Indeed, L(R) contains only strings of length
at least 2, furthermore 10 ∈ L(R) and cannot be pumped. Let now w ∈ L(R1) so that
|w| ≥ 3, we clain that p = 3. To prove this, let’s consider three cases:

1. w = 0 · · · 010, i.e. w is 10 anteceded by at least a 0. In such case it is easy to see that
we can write w as the concatenation of three strings xyz where x = ε, y = 0 and z is
the remaining substring. It is apparent that x, y and z satisfy the pumping lemma.



2. w = 101 · · · 1, i.e. w is 10 followed by at least a 1. We can define x = 10, y = 1 and
z = ε. Again, x, y and z satisfy the pumping lemma.

3. w = 0 · · · 0101 · · · 1, that is, 10 is both anteceded by at least a 0 and followed by at least
a 1. We can choose x, y and z either as in case 1. or in case 2.

(b) R = R2 := 10∗1.

Solution:
Strings of length 2 cannot be pumped. However, we claim that the pumping length is 3.
Indeed, let w ∈ L(R) so that |w| ≥ 3, then w = 10 · · · 01 (eventually the two 1s bracket a
single 0). As a consequence we can select x = 1, y = 0 and z = 1 so the pumping lemma is
satisfied.

(c) R := R1 ∪R2.

Solution:
Given two regular languages L1, L2 ⊆ Σ∗ with minimum pumping length p1, p2 ≥ 0 and set
p∪ to be the minimum pumping length of L1 ∪ L2, it is easy to see that

p∪ = max{p1, p2}.

To prove this, observe first that p∪ ≤ max{p1, p2}. Indeed, max{p1, p2} ≥ p1, p2 and let
w ∈ L1 ∪ L2 so that |w| ≥ max{p1, p2}, then |w| ≥ p1, p2. Since w belongs to L1 or to L2,
then by definition of pumping length, w can be pumped in both languages. Furthermore,
let’s suppose p∪ < max{p1, p2}, hence, p∪ < p1 or p∪ < p2. Let’s assume p∪ < p1, then all
words in L1 ∪ L2 ⊃ L1 with length at least p∪ could be pumped. This would imply that p1
is not the minimum pumping length for L1.

Since L(R) = L(R1) ∪ L(R2), thus p = 3.

Exercise 3.3 (Context-free languages)

(a) Provide a context-free grammar G = (V,Σ, R, S) that generates the language of palindromes
over an alphabet Ξ .

Solution:
For the sake of clearness, say that Ξ = {ξ1, ..., ξn}. We can define a context-free grammar
as follows

– V = {S}.
– Σ := Ξ.

– Defining ξ1, ..., ξn to be the symbols in the alphabet, then the set R of production rules
can be defined as follows:

S → ε | ξ1 | . . . | ξn,
S → ξ1Sξ1 | . . . | ξnSξn.

– S is the start variable.

(b) Prove that L(G) = Lpal.

Solution: We apply the induction principle on the length of the word. Using strong in-
duction can simplify the proof.



· n = 0, 1. The grammar contains all the possible words on Ξ of length at most 1. Such
words are trivially palindromes.

– induction. Let’s suppose that all words of length k are palindromes for any k = 0, ..., n−
1. We know that every words of length n is generated as ξjSξj where ξj ∈ Ξ is an
arbitrary letter and S is a word of length either n−1 or n−2. By induction hypothesis
S is a palindrome and so is ξjSξj .

The proof is complete.

(c) Consider the context-free grammar ({X,Y }, {0, 1}, R,X) where R is defined as follows

X → ε | 1,
X → 1X 1 | Y,
Y → ε | 0,
Y → 0Y 0.

Which language does this context-free grammar generate?

Solution:
It is easy to see that the above grammar generates binary strings as follows:

0 · · · 0︸ ︷︷ ︸
m

, (1)

1 · · · 1︸ ︷︷ ︸
n

, (2)

1 · · · 1︸ ︷︷ ︸
n

0 · · · 0︸ ︷︷ ︸
m

1 · · · 1︸ ︷︷ ︸
n

(3)

with n,m ≥ 0.
Strings of type (1) can be easily generated by starting from X and applying [X → Y ]
followed by an arbitrary sequence of [Y → 0Y 0] and [Y → ε | 0]. Strings of type (2) can be
obtained applying either [X → ε | 1] or [X → 1X 1]. Type (3) requires all the generation
rules specified by R.


