Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 3 Due: 20th November 2014

Exercise 3.1 (Regular languages, Pumping lemma) Are the following languages regular? Prove it.

(a) $L := \{a^i b^j a^{ij} \mid i, j \ge 0\}.$

Solution:

The language is not regular. To show this, let's suppose L to be a regular language with pumping length p > 0. Furthermore, let's consider the string $w = a^p b^p a^{p^2}$. It is apparent that $|w| \ge p$ and $w \in L$. According to the pumping lemma, w = xyz where

$$\begin{aligned} &- |xy| \le p. \\ &- y \ne \epsilon. \\ &- xy^k z \in L \text{ for all } k \in \mathbb{N}_0 \end{aligned}$$

Consequently, $xy^0z = xz$ must belong to L. Since $|xy| \le p$ and |y| > 0, then it is easy to see that $xy^0z = a^{p-|y|}b^pa^{p^2}$ is not a member of L. Thus, L is not regular.

(b)
$$L := \{b^2 a^n b^m a^3 \mid m, n \ge 0\}.$$

Solution:

The Language is regular. Indeed, it can be expressed by the following regular expression:

$$\mathcal{R} := b^2 a^* b^* a^3.$$

(c)
$$L := \{a^{k^3} \mid k \ge 0\}.$$

Solution:

The language is not regular. Again, let's suppose that L is regular with pumping length p > 0. The string $w := a^{p^3}$ contradicts the pumping lemma. Indeed, if w = xyz so that the statement of the pumping lemma holds, then it is easy to see that $xy^k z = a^{p^3 + (k-1)|y|}$. However, if such y existed, then $p^3 + (k-1)|y| = n(k)^3$ for every $k \ge 0$, where $n(k) \in \mathbb{N}_0$ depends upon k, which is trivially false.

Exercise 3.2 (Pumping Lemma)

Find the minimum pumping length of the languages $L(\mathcal{R})$ where

(a) $\mathcal{R} = \mathcal{R}_1 := 0^* 101^*$.

Solution:

The pumping length p must be grater than 2. Indeed, $L(\mathcal{R})$ contains only strings of length at least 2, furthermore $10 \in L(\mathcal{R})$ and cannot be pumped. Let now $w \in L(\mathcal{R}_1)$ so that $|w| \geq 3$, we claim that p = 3. To prove this, let's consider three cases:

1. $w = 0 \cdots 010$, i.e. w is 10 anteceded by at least a 0. In such case it is easy to see that we can write w as the concatenation of three strings xyz where $x = \epsilon$, y = 0 and z is the remaining substring. It is apparent that x, y and z satisfy the pumping lemma.

- 2. $w = 101 \cdots 1$, i.e. w is 10 followed by at least a 1. We can define x = 10, y = 1 and $z = \epsilon$. Again, x, y and z satisfy the pumping lemma.
- 3. $w = 0 \cdots 0101 \cdots 1$, that is, 10 is both anteceded by at least a 0 and followed by at least a 1. We can choose x, y and z either as in case 1. or in case 2.
- (b) $\mathcal{R} = \mathcal{R}_2 := 10^* 1.$

Solution:

Strings of length 2 cannot be pumped. However, we claim that the pumping length is 3. Indeed, let $w \in L(\mathcal{R})$ so that $|w| \geq 3$, then $w = 10 \cdots 01$ (eventually the two 1s bracket a single 0). As a consequence we can select x = 1, y = 0 and z = 1 so the pumping lemma is satisfied.

(c) $\mathcal{R} := \mathcal{R}_1 \cup \mathcal{R}_2.$

Solution:

Given two regular languages $L_1, L_2 \subseteq \Sigma^*$ with minimum pumping length $p_1, p_2 \ge 0$ and set p_{\cup} to be the minimum pumping length of $L_1 \cup L_2$, it is easy to see that

$$p_{\cup} = \max\{p_1, p_2\}.$$

To prove this, observe first that $p_{\cup} \leq \max\{p_1, p_2\}$. Indeed, $\max\{p_1, p_2\} \geq p_1, p_2$ and let $w \in L_1 \cup L_2$ so that $|w| \geq \max\{p_1, p_2\}$, then $|w| \geq p_1, p_2$. Since w belongs to L_1 or to L_2 , then by definition of pumping length, w can be pumped in both languages. Furthermore, let's suppose $p_{\cup} < \max\{p_1, p_2\}$, hence, $p_{\cup} < p_1$ or $p_{\cup} < p_2$. Let's assume $p_{\cup} < p_1$, then all words in $L_1 \cup L_2 \supset L_1$ with length at least p_{\cup} could be pumped. This would imply that p_1 is not the minimum pumping length for L_1 .

Since $L(\mathcal{R}) = L(\mathcal{R}_1) \cup L(\mathcal{R}_2)$, thus p = 3.

Exercise 3.3 (Context-free languages)

(a) Provide a context-free grammar $G = (V, \Sigma, R, S)$ that generates the language of palindromes over an alphabet Ξ .

Solution:

For the sake of clearness, say that $\Xi = \{\xi_1, ..., \xi_n\}$. We can define a context-free grammar as follows

$$-V = \{S\}.$$

 $-\Sigma := \Xi.$

- Defining $\xi_1, ..., \xi_n$ to be the symbols in the alphabet, then the set R of production rules can be defined as follows:

$$S \to \epsilon \mid \xi_1 \mid \dots \mid \xi_n,$$

$$S \to \xi_1 S \xi_1 \mid \dots \mid \xi_n S \xi_n.$$

-S is the start variable.

(b) Prove that $L(G) = L_{pal}$.

Solution: We apply the induction principle on the length of the word. Using strong induction can simplify the proof.

- $\underline{n=0,1}$. The grammar contains all the possible words on Ξ of length at most 1. Such words are trivially palindromes.
- <u>induction</u>. Let's suppose that all words of length k are palindromes for any k = 0, ..., n 1. We know that every words of length n is generated as $\xi_j S \xi_j$ where $\xi_j \in \Xi$ is an arbitrary letter and S is a word of length either n-1 or n-2. By induction hypothesis S is a palindrome and so is $\xi_j S \xi_j$.

The proof is complete.

(c) Consider the context-free grammar $({X, Y}, {0, 1}, R, X)$ where R is defined as follows

$$\begin{split} X &\to \epsilon \mid 1, \\ X &\to 1 \, X \, 1 \mid Y, \\ Y &\to \epsilon \mid 0, \\ Y &\to 0 \, Y \, 0. \end{split}$$

Which language does this context-free grammar generate?

Solution:

It is easy to see that the above grammar generates binary strings as follows:

$$\underbrace{\underbrace{0\cdots0}_{m}}_{m},$$
 (1)

$$\underbrace{1\cdots 1}_{n},$$
 (2)

$$\underbrace{1\cdots 1}_{n}\underbrace{0\cdots 0}_{m}\underbrace{1\cdots 1}_{n} \tag{3}$$

with $n, m \ge 0$.

Strings of type (1) can be easily generated by starting from X and applying $[X \to Y]$ followed by an arbitrary sequence of $[Y \to 0 Y 0]$ and $[Y \to \epsilon \mid 0]$. Strings of type (2) can be obtained applying either $[X \to \epsilon \mid 1]$ or $[X \to 1 X 1]$. Type (3) requires all the generation rules specified by R.