Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
University of Freiburg
F. Boniardi

Department of Computer Science
Winter semester 2014/2015

Exercise Sheet 3

Due: 20th November 2014
Exercise 3.1 (Regular languages, Pumping lemma)
Are the following languages regular? Prove it.
(a) $L:=\left\{a^{i} b^{j} a^{i j} \mid i, j \geq 0\right\}$.

Solution:

The language is not regular. To show this, let's suppose L to be a regular language with pumping length $p>0$. Furthermore, let's consider the string $w=a^{p} b^{p} a^{p^{2}}$. It is apparent that $|w| \geq p$ and $w \in L$. According to the pumping lemma, $w=x y z$ where

$$
-|x y| \leq p
$$

$$
-y \neq \epsilon
$$

$$
-x y^{k} z \in L \text { for all } k \in \mathbb{N}_{0}
$$

Consequently, $x y^{0} z=x z$ must belong to L. Since $|x y| \leq p$ and $|y|>0$, then it is easy to see that $x y^{0} z=a^{p-|y|} b^{p} a^{p^{2}}$ is not a member of L. Thus, L is not regular.
(b) $L:=\left\{b^{2} a^{n} b^{m} a^{3} \mid m, n \geq 0\right\}$.

Solution:
The Language is regular. Indeed, it can be expressed by the following regular expression:

$$
\mathcal{R}:=b^{2} a^{*} b^{*} a^{3} .
$$

(c) $L:=\left\{a^{k^{3}} \mid k \geq 0\right\}$.

Solution:

The language is not regular. Again, let's suppose that L is regular with pumping length $p>0$. The string $w:=a^{p^{3}}$ contradicts the pumping lemma. Indeed, if $w=x y z$ so that the statement of the pumping lemma holds, then it is easy to see that $x y^{k} z=a^{p^{3}+(k-1)|y|}$. However, if such y existed, then $p^{3}+(k-1)|y|=n(k)^{3}$ for every $k \geq 0$, where $n(k) \in \mathbb{N}_{0}$ depends upon k, which is trivially false.

Exercise 3.2 (Pumping Lemma)
Find the minimum pumping length of the languages $L(\mathcal{R})$ where
(a) $\mathcal{R}=\mathcal{R}_{1}:=0^{*} 101^{*}$.

Solution:

The pumping length p must be grater than 2 . Indeed, $L(\mathcal{R})$ contains only strings of length at least 2 , furthermore $10 \in L(\mathcal{R})$ and cannot be pumped. Let now $w \in L\left(\mathcal{R}_{1}\right)$ so that $|w| \geq 3$, we clain that $p=3$. To prove this, let's consider three cases:

1. $w=0 \cdots 010$, i.e. w is 10 anteceded by at least a 0 . In such case it is easy to see that we can write w as the concatenation of three strings $x y z$ where $x=\epsilon, y=0$ and z is the remaining substring. It is apparent that x, y and z satisfy the pumping lemma.
2. $w=101 \cdots 1$, i.e. w is 10 followed by at least a 1 . We can define $x=10, y=1$ and $z=\epsilon$. Again, x, y and z satisfy the pumping lemma.
3. $w=0 \cdots 0101 \cdots 1$, that is, 10 is both anteceded by at least a 0 and followed by at least a 1 . We can choose x, y and z either as in case 1 . or in case 2 .
(b) $\mathcal{R}=\mathcal{R}_{2}:=10^{*} 1$.

Solution:

Strings of length 2 cannot be pumped. However, we claim that the pumping length is 3 . Indeed, let $w \in L(\mathcal{R})$ so that $|w| \geq 3$, then $w=10 \cdots 01$ (eventually the two 1 s bracket a single 0). As a consequence we can select $x=1, y=0$ and $z=1$ so the pumping lemma is satisfied.
(c) $\mathcal{R}:=\mathcal{R}_{1} \cup \mathcal{R}_{2}$.

Solution:

Given two regular languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ with minimum pumping length $p_{1}, p_{2} \geq 0$ and set p_{\cup} to be the minimum pumping length of $L_{1} \cup L_{2}$, it is easy to see that

$$
p_{\cup}=\max \left\{p_{1}, p_{2}\right\}
$$

To prove this, observe first that $p_{\cup} \leq \max \left\{p_{1}, p_{2}\right\}$. Indeed, $\max \left\{p_{1}, p_{2}\right\} \geq p_{1}, p_{2}$ and let $w \in L_{1} \cup L_{2}$ so that $|w| \geq \max \left\{p_{1}, p_{2}\right\}$, then $|w| \geq p_{1}, p_{2}$. Since w belongs to L_{1} or to L_{2}, then by definition of pumping length, w can be pumped in both languages. Furthermore, let's suppose $p_{\cup}<\max \left\{p_{1}, p_{2}\right\}$, hence, $p_{\cup}<p_{1}$ or $p_{\cup}<p_{2}$. Let's assume $p_{\cup}<p_{1}$, then all words in $L_{1} \cup L_{2} \supset L_{1}$ with length at least p_{\cup} could be pumped. This would imply that p_{1} is not the minimum pumping length for L_{1}.

Since $L(\mathcal{R})=L\left(\mathcal{R}_{1}\right) \cup L\left(\mathcal{R}_{2}\right)$, thus $p=3$.
Exercise 3.3 (Context-free languages)
(a) Provide a context-free grammar $G=(V, \Sigma, R, S)$ that generates the language of palindromes over an alphabet Ξ.

Solution:
For the sake of clearness, say that $\Xi=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$. We can define a context-free grammar as follows
$-V=\{S\}$.
$-\Sigma:=\Xi$.

- Defining ξ_{1}, \ldots, ξ_{n} to be the symbols in the alphabet, then the set R of production rules can be defined as follows:

$$
\begin{aligned}
& S \rightarrow \epsilon\left|\xi_{1}\right| \ldots \mid \xi_{n} \\
& S \rightarrow \xi_{1} S \xi_{1}|\ldots| \xi_{n} S \xi_{n}
\end{aligned}
$$

$-S$ is the start variable.
(b) Prove that $L(G)=L_{\text {pal }}$.

Solution: We apply the induction principle on the length of the word. Using strong induction can simplify the proof.

- $n=0,1$. The grammar contains all the possible words on Ξ of length at most 1 . Such words are trivially palindromes.
- induction. Let's suppose that all words of length k are palindromes for any $k=0, \ldots, n-$ 1. We know that every words of length n is generated as $\xi_{j} S \xi_{j}$ where $\xi_{j} \in \Xi$ is an arbitrary letter and S is a word of length either $n-1$ or $n-2$. By induction hypothesis S is a palindrome and so is $\xi_{j} S \xi_{j}$.

The proof is complete.
(c) Consider the context-free grammar $(\{X, Y\},\{0,1\}, R, X)$ where R is defined as follows

$$
\begin{aligned}
& X \rightarrow \epsilon \mid 1, \\
& X \rightarrow 1 X 1 \mid Y, \\
& Y \rightarrow \epsilon \mid 0, \\
& Y \rightarrow 0 Y 0 .
\end{aligned}
$$

Which language does this context-free grammar generate?
Solution:
It is easy to see that the above grammar generates binary strings as follows:

$$
\begin{align*}
& \underbrace{0 \cdots 0}_{m}, \tag{1}\\
& \underbrace{1 \cdots 1}_{n}, \tag{2}\\
& \underbrace{1 \cdots 1}_{n} \underbrace{0 \cdots 0}_{m} \underbrace{1 \cdots 1}_{n} \tag{3}
\end{align*}
$$

with $n, m \geq 0$.
Strings of type (1) can be easily generated by starting from X and applying $[X \rightarrow Y$] followed by an arbitrary sequence of $[Y \rightarrow 0 Y 0]$ and $[Y \rightarrow \epsilon \mid 0]$. Strings of type (2) can be obtained applying either $[X \rightarrow \epsilon \mid 1]$ or $[X \rightarrow 1 X 1]$. Type (3) requires all the generation rules specified by R.

