## Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
F. Boniardi

Winter semester 2014/2015

## Exercise Sheet 7

Due: 18th December 2014
Exercise 7.1 (Decidable Languages)
Let $L$ and $L^{\prime}$ be decidable languages. Prove the following properties.
(a) The complement $\bar{L}$ is decidable.

Solution: Let $L=L(M)$ for some Turing Machine $M$ that always halts. We construct a TM $\bar{M}$ that $\bar{L}=L(\bar{M})$ as follows

1. The accepting states of $M$ are made nonaccepting states of $\bar{M}$ with no transitions, i.e., in these states $\bar{M}$ will halt without accepting.
2. $\bar{M}$ has a new accepting state, say $r$; there are no transitions from $r$.
3. For each combination of a nonaccepting state of $M$ and a tape symbol of $M$ such that $M$ has no transition, add a transition to the accepting state $r$.
Since $M$ is guaranteed to halt, we know that $\bar{M}$ is also guaranteed to halt. Moreover, $\bar{M}$ accepts exactly those strings that $M$ does not accept. Thus, $\bar{M}$ accepts $\bar{L}$
(b) The union $L \cup L^{\prime}$ is decidable.

Solution: Since $L$ and $L^{\prime}$ are decidable, there exist Turing Machines $M$ and $M^{\prime}$ that decide $L$ and $L^{\prime}$ respectively. Thus, we can construct a non-deterministic Turing Machine $M_{\cup}$ that runs $M$ and $M^{\prime}$ in parallel. It is easy to see that such TM decides the language $L \cup L^{\prime}$.

Exercise 7.2 (Decidable Languages)
Show that the following languages are decidable:
(a) $E Q_{D F A_{-} R E}=\{\langle D, R\rangle \mid D$ is a DFA and $R$ is a regular expression and $L(D)=L(R)\}$

Solution: We know from the lecture that $E Q_{D F A}=\{\langle A, B\rangle \mid A$ and $B$ are DFAs and $L(A)=$ $L(B)\}$ is decidable. Let $M$ be a Turing machine that decides this language. We construct a new TM $M^{\prime}$ that uses $M$ to decide $E Q_{D F A_{-} R E}$ as follows:
$M^{\prime}=$ "On input $\langle D, R\rangle$, where $D$ is a DFA and $R$ is a regular expression:

1. Convert $R$ to an equivalent DFA $A$ by using the procedure for this conversion given in Theorem 1.28.
2. Run $M$ on $\langle D, A\rangle$.
3. If $M$ accepts, accept; if $M$ rejects, reject."

Since $M$ accepts iff $L(D)=L(A)$, and since $L(A)=L(R)$ this procedure is correct.
(b) $A_{\epsilon C F G}=\{\langle G\rangle \mid G$ is a CFG that generates $\epsilon\}$

Solution: We know from the lecture that $A_{C F G}=\{\langle G, w\rangle \mid G$ is a CFG that generates input string $w\}$ is decidable. Let $M$ be a Turing machine that decides this language. We can obviously construct a TM $M^{\prime}$ that decides $A_{\epsilon C F G}$ as follows:
$M^{\prime}=$ "On input $\langle G\rangle$, where $G$ is a CFG:

1. Run $M$ on $\langle G, \epsilon\rangle$.
2. If $M$ accepts, accept; if $M$ rejects, reject."
(c) $A L L_{D F A}=\left\{\langle A\rangle \mid A\right.$ is a DFA that recognizes $\left.\Sigma^{*}\right\}$

Solution: A DFA $A$ recognizes $\Sigma^{*}$ iff all states that are reachable from the initial state are goal states. This can easily be checked by a Turing machine. Alternatively, we can use that $E Q_{D F A}$ is decidable. Let $M$ be a TM that decides this language. We can obviously construct a TM $M^{\prime}$ that decides $A L L_{D F A}$ as follows:
$M^{\prime}=$ "On input $\langle A\rangle$, where $A$ is a DFA:

1. Create a DFA $B$ that consists only of the initial state $q_{0}$ which is a goal state. For each symbol of the alphabet there is a transition from $q_{0}$ to $q_{0}$.
2. Run $M$ on $\langle A, B\rangle$.
3. If $M$ accepts, accept; if $M$ rejects, reject."
$M^{\prime}$ decides $A L L_{D F A}: M$ accepts iff $L(A)=L(B)$, and by construction $L(B)=\Sigma^{*}$.

## Exercise 7.3 (Undecidable Languages)

Consider the problem of determining whether a two-tape Turing machine ever writes a non-blank symbol on its second tape, i.e.
$N=\{\langle M, w\rangle \mid M$ is a two-tape Turing machine which writes a non-blank symbol onto its second tape when it runs on $w\}$.

Show that $N$ is undecidable. Hint: Use a reduction from $A_{T M}$.
Solution: Proof by contradiction: assume $N$ is decidable and let $D$ be a decider for $N$ :

$$
D(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { running on } w \text { writes a non-blank on its second tape } \\ \text { reject } & \text { if } M \text { running on } w \text { does not write a non-blank on its second tape }\end{cases}
$$

Use $D$ to define a TM $H$ as follows:
On input $\langle M, w\rangle$ where $M$ is an arbitrary one-tape Turing machine and $w \in \Sigma^{*}$,
(1) Create a TM $M^{\prime}$ that differs from $M$ only in being a two-tape Turing machine that does not use the second tape except for one case: If $M$ accepts the input, it writes a non-blank symbol on the second tape. This can be done by a simple change of the transition function: Whenever the transition function $\delta$ of $M$ maps the accept state of $M$ for a tape symbol to the empty set (meaning that there is no transition and $M$ halts), the transition function $\delta^{\prime}$ of $M^{\prime}$ writes instead the non-blank on the second tape.
(2) If $D\left(\left\langle M^{\prime}, w\right\rangle\right)=$ accept, accept; if $D\left(\left\langle M^{\prime}, w\right\rangle\right)=$ reject, reject.

This means

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

So, $H$ decides $A_{T M}$ which is known to be undecidable. Hence, $N$ cannot be decidable.

