Exercise 7.1 (Decidable Languages)
Let \(L \) and \(L' \) be decidable languages. Prove the following properties.

(a) The complement \(\overline{L} \) is decidable.

Solution: Let \(L = L(M) \) for some Turing Machine \(M \) that always halts. We construct a TM \(\overline{M} \) that \(\overline{L} = L(\overline{M}) \) as follows:

1. The accepting states of \(M \) are made nonaccepting states of \(\overline{M} \) with no transitions, i.e., in these states \(\overline{M} \) will halt without accepting.
2. \(\overline{M} \) has a new accepting state, say \(r \); there are no transitions from \(r \).
3. For each combination of a nonaccepting state of \(M \) and a tape symbol of \(M \) such that \(M \) has no transition, add a transition to the accepting state \(r \).

Since \(M \) is guaranteed to halt, we know that \(\overline{M} \) is also guaranteed to halt. Moreover, \(\overline{M} \) accepts exactly those strings that \(M \) does not accept. Thus, \(\overline{M} \) accepts \(\overline{L} \).

(b) The union \(L \cup L' \) is decidable.

Solution: Since \(L \) and \(L' \) are decidable, there exist Turing Machines \(M \) and \(M' \) that decide \(L \) and \(L' \) respectively. Thus, we can construct a non-deterministic Turing Machine \(M_\cup \) that runs \(M \) and \(M' \) in parallel. It is easy to see that such TM decides the language \(L \cup L' \).

Exercise 7.2 (Decidable Languages)
Show that the following languages are decidable:

(a) \(EQ_{DFA,RE} = \{ \langle D, R \rangle \mid D \text{ is a DFA and } R \text{ is a regular expression and } L(D) = L(R) \} \)

Solution: We know from the lecture that \(EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \) is decidable. Let \(M \) be a Turing machine that decides this language. We construct a new TM \(M' \) that uses \(M \) to decide \(EQ_{DFA,RE} \) as follows:

1. Convert \(R \) to an equivalent DFA \(A \) by using the procedure for this conversion given in Theorem 1.28.
2. Run \(M \) on \(\langle D, A \rangle \).
3. If \(M \) accepts, accept; if \(M \) rejects, reject.

Since \(M \) accepts iff \(L(D) = L(A) \), and since \(L(A) = L(R) \) this procedure is correct.

(b) \(A_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG that generates } \epsilon \} \)

Solution: We know from the lecture that \(A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates input string } w \} \) is decidable. Let \(M \) be a Turing machine that decides this language. We can obviously construct a TM \(M' \) that decides \(A_{CFG} \) as follows:

\(M' = \) “On input \(\langle G \rangle \), where \(G \) is a CFG:
1. Run M on $\langle G, \epsilon \rangle$.
2. If M accepts, accept; if M rejects, reject.”

(c) $\text{ALL}_{DFA} = \{ \langle A \rangle \mid A$ is a DFA that recognizes $\Sigma^* \}$

Solution: A DFA A recognizes Σ^* iff all states that are reachable from the initial state are goal states. This can easily be checked by a Turing machine. Alternatively, we can use that EQ_{DFA} is decidable. Let M be a TM that decides this language. We can obviously construct a TM M' that decides ALL_{DFA} as follows:

$M' = \text{"On input } \langle A \rangle, \text{ where } A \text{ is a DFA:}

1. Create a DFA B that consists only of the initial state q_0 which is a goal state. For each symbol of the alphabet there is a transition from q_0 to q_0.
2. Run M on $\langle A, B \rangle$.
3. If M accepts, accept; if M rejects, reject.”

M' decides ALL_{DFA}: M accepts iff $L(A) = L(B)$, and by construction $L(B) = \Sigma^*$.

Exercise 7.3 (Undecidable Languages)
Consider the problem of determining whether a two-tape Turing machine ever writes a non-blank symbol on its second tape, i.e.

$N = \{ \langle M, w \rangle \mid M$ is a two-tape Turing machine which writes a non-blank symbol onto its second tape when it runs on $w \}.$

Show that N is undecidable. Hint: Use a reduction from A_{TM}.

Solution: Proof by contradiction: assume N is decidable and let D be a decider for N:

$D(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ running on } w \text{ writes a non-blank on its second tape} \\
\text{reject} & \text{if } M \text{ running on } w \text{ does not write a non-blank on its second tape}
\end{cases}$

Use D to define a TM H as follows:

On input $\langle M, w \rangle$ where M is an arbitrary one-tape Turing machine and $w \in \Sigma^*$,

1. Create a TM M' that differs from M only in being a two-tape Turing machine that does not use the second tape except for one case: If M accepts the input, it writes a non-blank symbol on the second tape. This can be done by a simple change of the transition function: Whenever the transition function δ of M maps the accept state of M for a tape symbol to the empty set (meaning that there is no transition and M halts), the transition function δ' of M' writes instead the non-blank on the second tape.

2. If $D(\langle M', w \rangle) = \text{accept}$, accept; if $D(\langle M', w \rangle) = \text{reject}$, reject.

This means

$H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}$

So, H decides A_{TM} which is known to be undecidable. Hence, N cannot be decidable.