Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 7 Due: 18th December 2014

Exercise 7.1 (Decidable Languages)

Let L and L' be decidable languages. Prove the following properties.

(a) The complement \overline{L} is decidable.

Solution: Let L=L(M) for some Turing Machine M that always halts. We construct a TM \overline{M} that $\overline{L}=L(\overline{M})$ as follows

- 1. The accepting states of M are made nonaccepting states of \overline{M} with no transitions, i.e., in these states \overline{M} will halt without accepting.
- 2. \overline{M} has a new accepting state, say r; there are no transitions from r.
- 3. For each combination of a nonaccepting state of M and a tape symbol of M such that M has no transition, add a transition to the accepting state r.

Since M is guaranteed to halt, we know that \overline{M} is also guaranteed to halt. Moreover, \overline{M} accepts exactly those strings that M does not accept. Thus, \overline{M} accepts \overline{L}

(b) The union $L \cup L'$ is decidable.

Solution: Since L and L' are decidable, there exist Turing Machines M and M' that decide L and L' respectively. Thus, we can construct a non-deterministic Turing Machine M_{\cup} that runs M and M' in parallel. It is easy to see that such TM decides the language $L \cup L'$.

Exercise 7.2 (Decidable Languages)

Show that the following languages are decidable:

(a) $EQ_{DFA_RE} = \{\langle D, R \rangle \mid D \text{ is a DFA and } R \text{ is a regular expression and } L(D) = L(R)\}$

Solution: We know from the lecture that $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable. Let M be a Turing machine that decides this language. We construct a new TM M' that uses M to decide EQ_{DFA_RE} as follows:

M' = "On input $\langle D, R \rangle$, where D is a DFA and R is a regular expression:

- 1. Convert R to an equivalent DFA A by using the procedure for this conversion given in Theorem 1.28.
- 2. Run M on $\langle D, A \rangle$.
- 3. If M accepts, accept; if M rejects, reject."

Since M accepts iff L(D) = L(A), and since L(A) = L(R) this procedure is correct.

(b) $A_{\epsilon CFG} = \{ \langle G \rangle \mid G \text{ is a CFG that generates } \epsilon \}$

Solution: We know from the lecture that $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates input string } w\}$ is decidable. Let M be a Turing machine that decides this language. We can obviously construct a TM M' that decides $A_{\epsilon CFG}$ as follows:

M' = "On input $\langle G \rangle$, where G is a CFG:

- 1. Run M on $\langle G, \epsilon \rangle$.
- 2. If M accepts, accept; if M rejects, reject."
- (c) $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA that recognizes } \Sigma^* \}$

Solution: A DFA A recognizes Σ^* iff all states that are reachable from the initial state are goal states. This can easily be checked by a Turing machine. Alternatively, we can use that EQ_{DFA} is decidable. Let M be a TM that decides this language. We can obviously construct a TM M' that decides ALL_{DFA} as follows:

M' = "On input $\langle A \rangle$, where A is a DFA:

- 1. Create a DFA B that consists only of the initial state q_0 which is a goal state. For each symbol of the alphabet there is a transition from q_0 to q_0 .
- 2. Run M on $\langle A, B \rangle$.
- 3. If M accepts, accept; if M rejects, reject."

M' decides ALL_{DFA} : M accepts iff L(A) = L(B), and by construction $L(B) = \Sigma^*$.

Exercise 7.3 (Undecidable Languages)

Consider the problem of determining whether a two-tape Turing machine ever writes a non-blank symbol on its second tape, i.e.

 $N = \{ \langle M, w \rangle \mid M \text{ is a two-tape Turing machine which writes a non-blank symbol onto its second tape when it runs on } w \}.$

Show that N is undecidable. *Hint*: Use a reduction from A_{TM} . *Solution*: Proof by contradiction: assume N is decidable and let D be a decider for N:

 $D(\langle M,w\rangle) = \begin{cases} accept & \text{ if } M \text{ running on } w \text{ writes a non-blank on its second tape} \\ reject & \text{ if } M \text{ running on } w \text{ does not write a non-blank on its second tape} \end{cases}$

Use D to define a TM H as follows:

On input $\langle M, w \rangle$ where M is an arbitrary one-tape Turing machine and $w \in \Sigma^*$,

- (1) Create a TM M' that differs from M only in being a two-tape Turing machine that does not use the second tape except for one case: If M accepts the input, it writes a non-blank symbol on the second tape. This can be done by a simple change of the transition function: Whenever the transition function δ of M maps the accept state of M for a tape symbol to the empty set (meaning that there is no transition and M halts), the transition function δ' of M' writes instead the non-blank on the second tape.
- (2) If $D(\langle M', w \rangle) = accept$, accept; if $D(\langle M', w \rangle) = reject$, reject.

This means

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

So, H decides A_{TM} which is known to be undecidable. Hence, N cannot be decidable.