Exercise 8.1 (Runtime)

You have implemented an algorithm that needs exactly $f(n)$ steps to terminate, where n is the size of the input. Assume that on your machine each step takes 1µs.

For which maximal input size does your algorithm terminate within one day? Which input size can it maximally process in 10 days? Answer these (two!) questions for the following runtimes:

(a) $f(n) = n$
(b) $f(n) = n^2$
(c) $f(n) = 2^n$
(d) $f(n) = n^2 + n$
(e) (Extra, not mandatory) $f(n) = n \log n$

Hint: to compute f^{-1}, you can use the bisection method.

Solution: It is trivial to see that, the number maximal number of steps our machine is able to perform in 1 day is

$$N_{max} := 10^8 \cdot 60 \cdot 60 \cdot 24 = 864 \cdot 10^8,$$

that is, the number of milliseconds in one day. So, set D to be the number of days we allocate for computations and provided that f is invertible\(^{1}\), we have

$$n(D) := \left\lfloor f^{-1}(DN_{max}) \right\rfloor$$

So we have:

(a) $f^{-1}(DN_{max}) = ND_{max}$.
(b) $f^{-1}(DN_{max}) = \sqrt{DN_{max}}$.
(c) $f^{-1}(DN_{max}) = \log_2(DN_{max})$.
(d) $f^{-1}(DN_{max}) = \frac{1}{2} + \frac{1}{2} \sqrt{1 + 4DN_{max}}$.

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$n(1)$</th>
<th>$n(10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$864 \cdot 10^8$</td>
<td>$864 \cdot 10^9$</td>
</tr>
<tr>
<td>n^2</td>
<td>293938</td>
<td>929516</td>
</tr>
<tr>
<td>$n^2 + n$</td>
<td>293938</td>
<td>929515</td>
</tr>
<tr>
<td>2^n</td>
<td>36</td>
<td>39</td>
</tr>
</tbody>
</table>

Regarding part (e), the inverse of $f(n) = n \log n$ cannot be expressed in terms of elementary function, so it must be computed numerically, that is, by searching for an n^* so that

- $n^* \log n^* \leq ND_{max}$,
- $(n^* + 1) \log(n^* + 1) \geq ND_{max}$.

\(^{1}\)Which is very likely to be, as we expect to be monotonically increasing.
Exercise 8.2 (Big-O)
Consider the Turing machine below. The input alphabet is $\Sigma = \mathbb{N} = \{1, 2, 3, \ldots\}$. The operator $|w|$ denotes the length of the string w, the relation $<$ is the smaller relation on the natural numbers.

$M =$ “On input string w:
for $i = 1$ to $|w|$
for $j = |w|$ downto $i + 1$
if $w_j < w_{j-1}$
swap w_j and w_{j-1}
endif
endfor
endfor

Assume that the runtime of a swap and of a comparison of two natural numbers is constant.

(a) What is the smallest exponent $k \in \mathbb{R}$ so that the runtime of the Turing machine M is in $O(|w|^k)$? Justify your answer.

Solution:
The runtime of the TM M is in $O(|w|^2)$ but not in $O(|w|)$. Indeed, set $n := |w|$, the outermost loop is executed exactly n-times while the innermost is executed $(n-1)$-times on the first iteration, $(n-2)$-times on the second, down to 0-times on the last iteration of the outermost loop. As a consequence, the number of operations $\phi(n)$ are exactly

$$\phi(n) = \frac{n(n-1)}{2} + \frac{n(n-1)}{2},$$

where the first bit is due to the fact that a comparison ($w_j < w_{j-1}$) whilst the second one is related to the swap performed in each iteration of the innermost loop. So the time complexity is then given by

$$f(n) = C_{\text{comp}} \frac{n(n-1)}{2} + C_{\text{swap}} \frac{n(n-1)}{2} = (C_{\text{comp}} + C_{\text{swap}})g(n).$$

Here C_{comp} denote C_{swap} are respectively the runtime of comparing two integers and swapping them in the string, and $g(n) := \frac{n(n-1)}{2}$. As a consequence, for instance we have

$$f(n) \leq 2M \frac{1}{2} n^2 = Mn^2,$$

where $M := \max\{C_{\text{comp}}, C_{\text{swap}}\}$. That is $f \in O(n^2)$. It is obvious that such exponent is the smallest one.

(b) What does M compute (i.e. what is written on the tape when M halts)?

Solution: The TM sorts a sequence of integers according to the $<$ relation (this sorting algorithm is called bubble sort). To see this, call w^i the word after the i-th iteration of the outermost loop. It is easy to see that

$$w^i_n = \min\{w_j \mid w_j \in w^i_n\},$$

so $w^i_j \leq w^i_{j+1}$ for all $j = 1, \ldots, n - 1$.

Exercise 8.3 (Big-O)
Characterise the relationship between $f(n)$ and $g(n)$ in the following examples using the O, Θ or Ω-notation.

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$n(1)$</th>
<th>$n(10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \log n$</td>
<td>3911758539</td>
<td>35563480335</td>
</tr>
</tbody>
</table>
1. \(f(n) = 1000n \)
 \(g(n) = \sqrt{n} \)

2. \(f(n) = 2^{\log^2(n)} \)
 \(g(n) = \sum_{k=1}^{n^2} \frac{n}{2^k} \)

3. \(f(n) = n \cdot \log_2 n \)
 \(g(n) = \sqrt{n} \)

4. \(f(n) = \sqrt{n} \)
 \(g(n) = 1000n \)

5. (Extra, not mandatory) \(f(n) = \frac{n^{n+1}}{(n+1)!} \), \(g(n) = \sqrt{n!} \)

Hint: Stirling’s approximation could be useful here.

Solution: by definition:

- \(f \in O(g) \) if \(\exists \) constants \(C > 0 \) and \(n_0 \in \mathbb{N} \) such that \(f(n) \leq C \cdot g(n) \), for all \(n \geq n_0 \).
- \(f \in \Omega(g) \) if \(\exists \) constants \(c > 0 \) and \(n_0 \in \mathbb{N} \) such that \(f(n) \geq c \cdot g(n) \), for all \(n \geq n_0 \).
- \(f \in \Theta(g) \) if \(f \in O(g) \) and \(f \in \Omega(g) \).

Note that:

- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \), then \(\exists n_0 \in \mathbb{N} : f(n) < g(n) \forall n \geq n_0 \), that is \(f \in O(g) \). Furthermore \(f \notin \Omega(g) \).
- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(\exists n_0 \in \mathbb{N} : f(n) > g(n) \forall n \geq n_0 \), that is \(f \in \Omega(g) \). Furthermore \(f \notin \Theta(g) \).
- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = l \in (0, \infty) \), then \(\forall \epsilon > 0 \exists n_0(\epsilon) \in \mathbb{N} : (l - \epsilon)g(n) < f(n) < (l + \epsilon)g(n) \) \(\forall n \geq n_0(\epsilon) \), that is \(f \in \Theta(g) \).

Therefore, we have:

1. \(f(n) = 1000n \) and \(g(n) = \sqrt{n} = n^{0.5} \)

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^{0.99998}}{n^{0.5}} = \lim_{n \to \infty} n^{0.49998} = \infty \implies f \in \Omega(g)
 \]

2. \(f(n) = 2^{\log^2(n)} \) and \(g(n) = \sum_{k=1}^{n^2} \frac{n}{2^k} \)

 Since the exercise does not specify the base of the logarithm, we denote it by \(a \). Then,

 \[
 f(n) = 2^{\log_a^2 n} = 2^{(\log_{10} n)(\log_a n)} = 2^{\frac{\log_{10} n}{\log_{10} 2} \cdot \frac{\log_a n}{\log_{10} 2}} = \left(2^{\frac{\log_{10} n}{\log_{10} 2}}\right)^{\frac{1}{\log_{10} 2}} = \left(2^{\log_2 n}\right)^{\frac{1}{\log_{10} 2}} = n^{\frac{1}{\log_{10} 2}}
 \]

 where \(b = \frac{1}{\log_{10} 2} \) is a constant.

 On the other hand, since

 \[
 g(n) = \frac{n}{2^1} + \frac{n}{2^2} + \frac{n}{2^3} + \ldots + \frac{n}{2^{2^n}}
 \]

 then

 \[
 \frac{1}{2} g(n) = \frac{1}{2} \left(\frac{n}{2^1} + \frac{n}{2^2} + \frac{n}{2^3} + \ldots + \frac{n}{2^{2^n-1}} + \frac{n}{2^{2^n}} \right) = \frac{n}{2^2} + \frac{n}{2^3} + \frac{n}{2^4} + \ldots + \frac{n}{2^{2^n+1}} + \frac{n}{2^{2^n+1}}
 \]

 Therefore,

 \[
 g(n) - \frac{1}{2} g(n) = \frac{n}{2^1} - \frac{n}{2^{2^n+1}} \implies \frac{1}{2} g(n) = \frac{n}{2^1} - \frac{n}{2^{2^n+1}} \implies g(n) = n \left(1 - \frac{1}{2^{2^n}} \right)
 \]

 As a result,

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^{\frac{1}{\log_{10} 2}}}{n \left(1 - \frac{1}{2^{2^n}} \right)} = \lim_{n \to \infty} \frac{n^{\frac{1}{\log_{10} 2} - 1}}{1 - \frac{1}{2^{2^n}}} = \infty \implies f \in \Omega(g)
 \]
3. \(f(n) = n \cdot \log_2 n \) and \(g(n) = \sqrt[n]{n} = n^{\frac{1}{n}} \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n \log_2 n}{\sqrt[n]{n}} = \lim_{n \to \infty} n^{\frac{2}{n} \log_2 n} = \infty \implies f \in \Omega(g)
\]

4. \(f(n) = \sqrt{n} \) and \(g(n) = 1000n \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\sqrt{n}}{1000n} = \lim_{n \to \infty} \frac{1}{1000 \cdot \sqrt{n}} = 0 \implies f(n) \in O(g(n))
\]

5. \(f(n) = \frac{n^{n+1}}{(n+1)!} \) and \(g(n) = \sqrt[n]{n!} \).

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{(1 + \frac{1}{n})^{-n} \cdot e^{-\frac{1}{n}}}{\sqrt[n]{2\pi ne^{-1}}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\pi n}} = 1 \implies f \in \Theta(g).
\]

where the second equality is obtained by dint of the Stirling’s formula and the definition of the constant \(e \):

\[
\lim_{n \to \infty} \sqrt[2\pi n]{\frac{n^n}{n!}} = 1, \quad \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e
\]

and the last equality follows from

\[
\lim_{n \to \infty} \sqrt[\pi n]{n} = \lim_{n \to \infty} e^{\frac{1}{n} \log n + \frac{1}{n} \log \pi} = e^0 = 1.
\]