Theoretical Computer Science (Bridging Course) Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science # Exercise Sheet 10 Due: 22nd January 2015 ### Exercise 10.1 (Propositional Logic) Determine the validity or invalidity of the following argument: "If Alice is elected class-president, then either Betty is elected vice-president, or Carol is elected treasurer. Betty is elected vice-president. Therefore if Alice is elected class-president, then Carol is not elected treasurer." Please explain every formal step. Solution: We use the following symbols for each sentence. - A Alice is elected class-president - B Betty is elected vice president - C Carol is elected treasurer The translation for each line of the argument is as follows $A \to ((B \land \neg C) \lor (\neg B \land C))$ If Alice is elected class-president, then either Betty is elected vice-president, or Carol is elected treasurer. B Betty is elected vice-president $A \to \neg C$ if Alice is elected class-president, then Carol is not elected treasurer. The sentence corresponding to the argument is $$\phi := ((A \to ((B \land \neg C) \lor (\neg B \land C))) \land B) \to (A \to \neg C)$$ In order to see if ϕ is valid or not, we can try to find an interpretation I for A, B, C that falsifies ϕ . Looking at the truth table of ϕ we have: | A | В | С | ϕ | |--------------|--------------|--------------|--------------| | \mathbf{T} | \mathbf{T} | \mathbf{T} | \mathbf{T} | | \mathbf{T} | \mathbf{T} | F | \mathbf{T} | | \mathbf{T} | F | \mathbf{T} | \mathbf{T} | | \mathbf{T} | F | F | \mathbf{T} | | \mathbf{F} | \mathbf{T} | \mathbf{T} | \mathbf{T} | | \mathbf{F} | \mathbf{T} | F | \mathbf{T} | | \mathbf{F} | \mathbf{F} | \mathbf{T} | \mathbf{T} | | F | F | F | \mathbf{T} | The above statement shows that every interpretation is a model so the argument ϕ is valid. ¹ ¹In this exercise we have used the "exclusive or" (called XOR operator) that is often denoted with \oplus : $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$. #### Exercise 10.2 (Propositional Logic) (a) Consider the following logical formula: $$\phi = (A \leftrightarrow \neg B) \land \neg (C \lor B \to A)$$ Show that $\phi \equiv \neg A \land B$ by using the equivalences from the lectures (see slide 17, 08.pdf) and the equivalences $\psi \land \neg \psi \equiv \bot$ and $\psi \lor \bot \equiv \psi \equiv \bot \lor \psi$. Apply in each step only one of the equivalences with the exception that you may implicitly use associativity. Solution: $$\phi \equiv (A \leftrightarrow \neg B) \land \neg (C \lor B \to A) \qquad \qquad \text{(definition)}$$ $$\equiv (A \leftrightarrow \neg B) \land \neg (\neg (C \lor B) \lor A) \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (A \leftrightarrow \neg B) \land (\neg \neg (C \lor B) \land \neg A) \qquad \qquad \text{(De Morgan)}$$ $$\equiv (A \leftrightarrow \neg B) \land (\neg B) \land (\neg A) \qquad \qquad \text{(double negation)}$$ $$\equiv (A \leftrightarrow \neg B) \land (\neg B \to A) \land (C \lor B) \land \neg A \qquad \qquad (\leftrightarrow \text{elimination})$$ $$\equiv (\neg A \lor \neg B) \land (\neg B \to A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \lor \neg B) \land (\neg B \lor A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \lor \neg B) \land (B \lor A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \lor \neg B) \land (B \lor A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (\neg A \lor \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (\neg A \lor \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \lor \neg B) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$ $$\Rightarrow (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \rightarrow (A \land \neg B) \land (A \land \neg B) \land (A \land \neg B) \rightarrow (A$$ - (b) Consider a vocabulary with only four atomic propositions A, B, C, D. How many models are there for the following formulae? Explain. - i) $(A \wedge B) \vee (B \wedge C)$ - ii) $(A \leftrightarrow B) \land (B \leftrightarrow C)$ Solution: These can be computed by counting the rows in a truth table that come out true. Remember to count the propositions that are not mentioned; if a sentence mentions only A and B, then we multiply the number of models for $\{A, B\}$ by 2^2 to account for C, D. Hence, i) Considering that proposition D is not mentioned, there are $3 \cdot 2 = 6$ models that satisfy this formula. | Α | В | С | $A \wedge B$ | $B \wedge C$ | $(A \land B) \lor (B \land C)$ | |--------------|--------------|--------------|--------------|--------------|--------------------------------| | F | \mathbf{F} | F | F | F | F | | F | \mathbf{F} | \mathbf{T} | F | F | F | | \mathbf{F} | \mathbf{T} | \mathbf{F} | \mathbf{F} | \mathbf{F} | \mathbf{F} | | \mathbf{F} | \mathbf{T} | \mathbf{T} | \mathbf{F} | \mathbf{T} | T | | \mathbf{T} | \mathbf{F} | \mathbf{F} | \mathbf{F} | \mathbf{F} | \mathbf{F} | | \mathbf{T} | \mathbf{F} | \mathbf{T} | \mathbf{F} | \mathbf{F} | \mathbf{F} | | \mathbf{T} | \mathbf{T} | F | T | \mathbf{F} | T | | \mathbf{T} | \mathbf{T} | \mathbf{T} | T | T | T | ii) Similarly, there are $2 \cdot 2$ models that satisfy this formula. | A | В | С | $A \leftrightarrow B \land (B \leftrightarrow C)$ | |--------------|--------------|--------------|---| | F | F | F | T | | F | F | \mathbf{T} | F | | F | \mathbf{T} | \mathbf{F} | F | | F | \mathbf{T} | \mathbf{T} | F | | \mathbf{T} | F | F | F | | \mathbf{T} | F | \mathbf{T} | F | | \mathbf{T} | \mathbf{T} | \mathbf{F} | F | | \mathbf{T} | \mathbf{T} | \mathbf{T} | T | #### Exercise 10.3 (Propositional Logic) Show that the following formula is *valid*: $$(A \to B) \leftrightarrow (\neg B \to \neg A).$$ The implication $\neg B \rightarrow \neg A$ is sometimes called *contrapositive* or *counternominal* implication of $A \rightarrow B$. #### Solution: To show the validity of the above formula, we can apply the usual equivalences. We get the following identities: $$\begin{split} (A \to B) &\leftrightarrow (\neg B \to \neg A) \equiv \\ &\equiv (\neg A \lor B) \leftrightarrow (\neg \neg B \lor \neg A) \equiv \\ &\equiv (\neg A \lor B) \leftrightarrow (B \lor \neg A) \equiv \\ &\equiv (\neg A \lor B) \leftrightarrow (\neg A \lor B) \equiv \\ &\equiv (\neg (\neg A \lor B) \lor (\neg A \lor B)) \land (\neg (\neg A \lor B) \lor (\neg A \lor B)) \equiv \\ &\equiv \top \land \top \equiv \top \end{split}$$ Equivalently, we could have used a truth table, obtaining | A | В | $(A \to B) \leftrightarrow (\neg B \to \neg A)$ | |--------------|--------------|---| | \mathbf{T} | \mathbf{T} | ${f T}$ | | ${f T}$ | \mathbf{F} | ${f T}$ | | \mathbf{F} | \mathbf{T} | ${f T}$ | | \mathbf{F} | \mathbf{F} | ${f T}$ |