Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 10 Due: 22nd January 2015

Exercise 10.1 (Propositional Logic)

Determine the validity or invalidity of the following argument:

"If Alice is elected class-president, then either Betty is elected vice-president, or Carol is elected treasurer. Betty is elected vice-president. Therefore if Alice is elected class-president, then Carol is not elected treasurer."

Please explain every formal step.

Solution: We use the following symbols for each sentence.

- A Alice is elected class-president
- B Betty is elected vice president
- C Carol is elected treasurer

The translation for each line of the argument is as follows

 $A \to ((B \land \neg C) \lor (\neg B \land C))$ If Alice is elected class-president, then either Betty is elected vice-president, or Carol is elected treasurer.

B Betty is elected vice-president

 $A \to \neg C$ if Alice is elected class-president, then Carol is not elected treasurer.

The sentence corresponding to the argument is

$$\phi := ((A \to ((B \land \neg C) \lor (\neg B \land C))) \land B) \to (A \to \neg C)$$

In order to see if ϕ is valid or not, we can try to find an interpretation I for A, B, C that falsifies ϕ . Looking at the truth table of ϕ we have:

A	В	С	ϕ
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	F	\mathbf{T}
\mathbf{T}	F	\mathbf{T}	\mathbf{T}
\mathbf{T}	F	F	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	F	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
F	F	F	\mathbf{T}

The above statement shows that every interpretation is a model so the argument ϕ is valid. ¹

¹In this exercise we have used the "exclusive or" (called XOR operator) that is often denoted with \oplus : $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$.

Exercise 10.2 (Propositional Logic)

(a) Consider the following logical formula:

$$\phi = (A \leftrightarrow \neg B) \land \neg (C \lor B \to A)$$

Show that $\phi \equiv \neg A \land B$ by using the equivalences from the lectures (see slide 17, 08.pdf) and the equivalences $\psi \land \neg \psi \equiv \bot$ and $\psi \lor \bot \equiv \psi \equiv \bot \lor \psi$. Apply in each step only one of the equivalences with the exception that you may implicitly use associativity.

Solution:

$$\phi \equiv (A \leftrightarrow \neg B) \land \neg (C \lor B \to A) \qquad \qquad \text{(definition)}$$

$$\equiv (A \leftrightarrow \neg B) \land \neg (\neg (C \lor B) \lor A) \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (A \leftrightarrow \neg B) \land (\neg \neg (C \lor B) \land \neg A) \qquad \qquad \text{(De Morgan)}$$

$$\equiv (A \leftrightarrow \neg B) \land (\neg B) \land (\neg A) \qquad \qquad \text{(double negation)}$$

$$\equiv (A \leftrightarrow \neg B) \land (\neg B \to A) \land (C \lor B) \land \neg A \qquad \qquad (\leftrightarrow \text{elimination})$$

$$\equiv (\neg A \lor \neg B) \land (\neg B \to A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \lor \neg B) \land (\neg B \lor A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \lor \neg B) \land (B \lor A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \lor \neg B) \land (B \lor A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (\neg A \lor \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (\neg A \lor \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg A) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \lor \neg B) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land \neg A \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\equiv (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \qquad (\rightarrow \text{elimination})$$

$$\Rightarrow (\neg A \land \neg B) \land (C \lor B) \land (C \lor B) \rightarrow (A \land \neg B) \land (A \land \neg B) \land (A \land \neg B) \rightarrow (A$$

- (b) Consider a vocabulary with only four atomic propositions A, B, C, D. How many models are there for the following formulae? Explain.
 - i) $(A \wedge B) \vee (B \wedge C)$
 - ii) $(A \leftrightarrow B) \land (B \leftrightarrow C)$

Solution: These can be computed by counting the rows in a truth table that come out true. Remember to count the propositions that are not mentioned; if a sentence mentions only A and B, then we multiply the number of models for $\{A, B\}$ by 2^2 to account for C, D. Hence,

i) Considering that proposition D is not mentioned, there are $3 \cdot 2 = 6$ models that satisfy this formula.

Α	В	С	$A \wedge B$	$B \wedge C$	$(A \land B) \lor (B \land C)$
F	\mathbf{F}	F	F	F	F
F	\mathbf{F}	\mathbf{T}	F	F	F
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	F	T	\mathbf{F}	T
\mathbf{T}	\mathbf{T}	\mathbf{T}	T	T	T

ii) Similarly, there are $2 \cdot 2$ models that satisfy this formula.

A	В	С	$A \leftrightarrow B \land (B \leftrightarrow C)$
F	F	F	T
F	F	\mathbf{T}	F
F	\mathbf{T}	\mathbf{F}	F
F	\mathbf{T}	\mathbf{T}	F
\mathbf{T}	F	F	F
\mathbf{T}	F	\mathbf{T}	F
\mathbf{T}	\mathbf{T}	\mathbf{F}	F
\mathbf{T}	\mathbf{T}	\mathbf{T}	T

Exercise 10.3 (Propositional Logic)

Show that the following formula is *valid*:

$$(A \to B) \leftrightarrow (\neg B \to \neg A).$$

The implication $\neg B \rightarrow \neg A$ is sometimes called *contrapositive* or *counternominal* implication of $A \rightarrow B$.

Solution:

To show the validity of the above formula, we can apply the usual equivalences. We get the following identities:

$$\begin{split} (A \to B) &\leftrightarrow (\neg B \to \neg A) \equiv \\ &\equiv (\neg A \lor B) \leftrightarrow (\neg \neg B \lor \neg A) \equiv \\ &\equiv (\neg A \lor B) \leftrightarrow (B \lor \neg A) \equiv \\ &\equiv (\neg A \lor B) \leftrightarrow (\neg A \lor B) \equiv \\ &\equiv (\neg (\neg A \lor B) \lor (\neg A \lor B)) \land (\neg (\neg A \lor B) \lor (\neg A \lor B)) \equiv \\ &\equiv \top \land \top \equiv \top \end{split}$$

Equivalently, we could have used a truth table, obtaining

A	В	$(A \to B) \leftrightarrow (\neg B \to \neg A)$
\mathbf{T}	\mathbf{T}	${f T}$
${f T}$	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{T}	${f T}$
\mathbf{F}	\mathbf{F}	${f T}$