Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
University of Freiburg
F. Boniardi

Department of Computer Science
Winter Semester 2014/2015

Exercise Sheet 12

Due: $5^{\text {th }}$ February 2015
Exercise 12.1 (Resolution)
Consider the knowledge base $K B=\{A, B \vee E \vee \neg D, K \wedge E \leftrightarrow A \wedge B, \neg C \rightarrow D, E \vee F \rightarrow \neg D\}$.
Use resolution to prove that $K B \models A \wedge C$.
Hint: According to Contradiction Theorem, $K B \vDash A \wedge C$ iff $K B \cup\{\neg(A \wedge C)\}$ is unsatisfiable.
Solution: According to the Contradiction Theorem, in order to prove that $K B \models A \wedge C$ we can equivalently show, by dint of Resolution, that $K B^{\prime}=K B \cup\{\neg(A \wedge C)\}$ is unsatisfiable. We first have to convert $K B^{\prime}$ into clause form:

Formula (and equivalences)	Clauses
A	$\{A\}$
$B \vee E \vee \neg D$	$\{B, E, \neg D\}$
$K \wedge E \leftrightarrow A \wedge B$	$\{\neg K, \neg E, A\}$
$\equiv(K \wedge E \rightarrow A \wedge B) \wedge(A \wedge B \rightarrow K \wedge E)$	$\{\neg K, \neg E, B\}$
$\equiv(\neg(K \wedge E) \vee(A \wedge B)) \wedge(\neg(A \wedge B) \vee(K \wedge E))$	$\{\neg A, \neg B, K\}$
$\equiv(\neg K \vee \neg E \vee(A \wedge B)) \wedge(\neg A \vee \neg B \vee(K \wedge E))$	$\{\neg A, \neg B, E\}$
$\equiv(\neg K \vee \neg E \vee A) \wedge(\neg K \vee \neg E \vee B) \wedge$	
$(\neg A \vee \neg B \vee K) \wedge(\neg A \vee \neg B \vee E)$	
$\neg C \rightarrow D \equiv \neg \neg C \vee D \equiv C \vee D$	$\{C, D\}$
$E \vee F \rightarrow \neg D \equiv \neg(E \vee F) \vee \neg D$	$\{\neg E, \neg D\}$
$\equiv(\neg E \wedge \neg F) \vee \neg D \equiv(\neg E \vee \neg D) \wedge(\neg F \vee \neg D)$	$\{\neg F, \neg D\}$
$\neg(A \wedge C) \equiv \neg A \vee \neg C$	$\{\neg A, \neg C\}$

We want now to derive the empty clause from the set

$$
\begin{aligned}
\Delta:= & \{\{A\},\{B, E, \neg D\},\{\neg K, \neg E, A\},\{\neg K, \neg E, B\},\{\neg A, \neg B, K\},\{\neg A, \neg B, E\}, \\
& \{C, D\},\{\neg E, \neg D\},\{\neg F, \neg D\},\{\neg A, \neg C\}\} .
\end{aligned}
$$

One possible derivation is the following:

$C_{1}=\{A\}$	
$C_{2}=\{\neg A, \neg C\}$	
from Δ	
$C_{3}=\{\neg C\}$	
$C_{4}=\{B, E, \neg D\}$	from C_{1} and C_{2}
$C_{5}=\{\neg A, \neg B, E\}$	from Δ
$C_{6}=\{\neg A, E, \neg D\}$	from C_{4} and C_{5}
$C_{7}=\{E, \neg D\}$	
$C_{8}=\{\neg E, \neg D\}$	from C_{1} and C_{6}
$C_{9}=\{\neg D\}$	
$C_{10}=\{C, D\}$	from C_{7} and C_{8}
$C_{11}=\{C\}$	
$C_{12}=\square$	
	from C_{9} and C_{10}
	from C_{3} and C_{11}

The statement is finally proved.
Exercise 12.2 (Predicate Logic,Terminology)
Classify the following expressions as terms, ground terms, atoms and formulae. If there is more than one possibility for an expression, please list them all. In the expressions, a and bare constant symbols, x and y are variable symbols, f and g are function symbols, and P and Q are relation symbols.
(a) $\mathrm{P}(x, y)$
(b) $\mathrm{f}(\mathrm{a}, \mathrm{b})$
(c) $\mathcal{I} \mid=\mathrm{P}(\mathrm{a}, \mathrm{f}(\mathrm{b}))$
(d) $\mathcal{I}, \alpha \models \mathrm{P}(\mathrm{a}, \mathrm{f}(x))$
(e) $\mathrm{f}(\mathrm{g}(x), \mathrm{b})$
(f) $\mathrm{Q}(x)$ is satisfiable.
(g) $\exists x(\mathrm{P}(x, y) \wedge \mathrm{Q}(x)) \vee \mathrm{P}(y, x)$
(h) $\forall x(\exists y(\mathrm{P}(x, y) \wedge \mathrm{Q}(x)) \vee \mathrm{P}(x, y))$
(i) $\forall x \forall y(\mathrm{P}(x, y) \wedge \mathrm{Q}(x) \vee \mathrm{P}(\mathrm{f}(y), x))$
(j) $\mathrm{Q}(x) \vee \mathrm{P}(x, y) \equiv \mathrm{P}(x, y) \vee \mathrm{Q}(x)$

Solution:

- terms: b, e
- ground terms: b
- atoms: a
- formulae: $\mathrm{a}, \mathrm{g}, \mathrm{h}, \mathrm{i}$

Exercise 12.3 (Extra, Predicate Logic, Interpretation)
Consider the following set of formulae:

$$
K B=\left\{\begin{array}{l}
\forall x \neg \mathrm{P}(x, x) \\
\forall x \forall y \forall z((\mathrm{P}(x, y) \wedge \mathrm{P}(y, z)) \rightarrow \mathrm{P}(x, z)) \\
\forall x \forall y(\mathrm{P}(x, y) \vee(x=y) \vee \mathrm{P}(y, x))
\end{array}\right\}
$$

- Specify an interpretation $\mathcal{I}=\langle\mathcal{D}, \cdot \mathcal{I}\rangle$ with $\mathcal{D}=\left\{d_{1}, \ldots, d_{4}\right\}$ and prove that $\mathcal{I} \models K B$ (i.e., $\mathcal{I} \models \varphi$ for all $\varphi \in K B)$. Why is it not necessary to specify a variable assignment α to state a model of $K B$?

Solution: Consider the interpretation $\mathcal{I}=\left\langle\mathcal{D}, \cdot^{\mathcal{I}}\right\rangle$ with

$$
\mathrm{P}^{\mathcal{I}}=\left\{\left(d_{1}, d_{2}\right),\left(d_{1}, d_{3}\right),\left(d_{1}, d_{4}\right),\left(d_{2}, d_{3}\right),\left(d_{2}, d_{4}\right),\left(d_{3}, d_{4}\right)\right\}
$$

Since all variables are bound, we don't need to specify a variable assignment, but the following needs to hold for all variable assignments α :
In order to prove that $\mathcal{I}, \alpha=K B$, we have to show that $\mathcal{I}, \alpha \models \varphi$ for each $\varphi \in K B$.

$$
\begin{aligned}
\mathcal{I}, \alpha \models \forall x \neg \mathrm{P}(x, x) & \text { if } \mathcal{I}, \alpha[x:=d] \models \neg \mathrm{P}(x, x) \text { for all } d \in \mathcal{D} \\
& \text { if } \mathcal{I}, \alpha[x:=d] \not \vDash \mathrm{P}(x, x) \text { for all } d \in \mathcal{D} \\
& \text { if }(d, d) \notin \mathrm{P}^{\mathcal{I}} \text { for all } d \in \mathcal{D}, \\
& \text { which obviously holds. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{I}, \alpha \models \forall x \forall y \forall z((\mathrm{P}(x, y) \wedge \mathrm{P}(y, z)) \rightarrow \mathrm{P}(x, z)) \\
& \quad \text { if } \mathcal{I}, \alpha[x:=d] \models \forall y \forall z((\mathrm{P}(x, y) \wedge \mathrm{P}(y, z)) \rightarrow \mathrm{P}(x, z)) \\
& \quad \text { for all } d \in \mathcal{D} \\
& \text { if } \mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}\right] \models \forall z((\mathrm{P}(x, y) \wedge \mathrm{P}(y, z)) \rightarrow \mathrm{P}(x, z)) \\
& \quad \text { for all } d, d^{\prime} \in \mathcal{D} \\
& \text { if } \mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}, z / d^{\prime \prime}\right] \models(\mathrm{P}(x, y) \wedge \mathrm{P}(y, z)) \rightarrow \mathrm{P}(x, z) \\
& \quad \text { for all } d, d^{\prime}, d^{\prime \prime} \in \mathcal{D} \\
& \text { if (if } \mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}, z / d^{\prime \prime}\right] \models \mathrm{P}(x, y) \wedge \mathrm{P}(y, z) \text {, then } \\
& \left.\mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}, z / d^{\prime \prime}\right] \models \mathrm{P}(x, z) \text { for all } d, d^{\prime}, d^{\prime \prime} \in \mathcal{D}\right) \\
& \text { if (if } \mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}, z / d^{\prime \prime}\right] \models \mathrm{P}(x, y) \text { and } \\
& \quad \mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}, z / d^{\prime \prime}\right] \models \mathrm{P}(y, z) \text {, then } \\
& \left.\mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}, z / d^{\prime \prime}\right] \models \mathrm{P}(x, z) \text { for all } d, d^{\prime}, d^{\prime \prime} \in \mathcal{D}\right) \\
& \text { if (if }\left(d, d^{\prime}\right) \in \mathrm{P}^{\mathcal{I}} \text { and }\left(d^{\prime}, d^{\prime \prime}\right) \in \mathrm{P}^{\mathcal{I}}, \text { then }\left(d, d^{\prime \prime}\right) \in \mathrm{P}^{\mathcal{I}} \\
& \left.\quad \text { for all } d, d^{\prime}, d^{\prime \prime} \in \mathcal{D}\right), \\
& \text { which is easy to see for } \mathrm{P}^{\mathcal{I}} .
\end{aligned}
$$

$$
\mathcal{I}, \alpha \models \forall x \forall y(\mathrm{P}(x, y) \vee x=y \vee \mathrm{P}(y, x))
$$

if for all $d \in \mathcal{D}$

$$
\mathcal{I}, \alpha[x:=d] \models \forall y(\mathrm{P}(x, y) \vee x=y \vee \mathrm{P}(y, x))
$$

if for all $d, d^{\prime} \in \mathcal{D}$

$$
\mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}\right] \models \mathrm{P}(x, y) \vee x=y \vee \mathrm{P}(y, x)
$$

$$
\text { if for all } d, d^{\prime} \in \mathcal{D}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}\right] \models \mathrm{P}(x, y) \text { or } \\
\quad \mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}\right] \models x=y \text { or } \\
\mathcal{I}, \alpha\left[x:=d, y:=d^{\prime}\right] \models \mathrm{P}(y, x)
\end{array} \\
& \text { if for all } d, d^{\prime \prime} \in \mathcal{D} \\
& \quad\left(d, d^{\prime}\right) \in \mathrm{P}^{\mathcal{I}} \text { or } d=d^{\prime} \text { or }\left(d^{\prime}, d\right) \in \mathrm{P}^{\mathcal{I}},
\end{aligned}
$$

which again is easy to see for $\mathrm{P}^{\mathcal{I}}$.

