
Theoretical Computer 
Science (Bridging Course) 

Gian Diego Tipaldi 

Introduction 



Time and Place 

 Lecture 

 Today  08:00 – 10:00 

 

 Exercises 

 Monday 10:00 – 12:00 (appointment) 

 

 Building 52 – SR 02 017 

 



People  

 Dr. Gian Diego Tipaldi (lecturer) 

 Office: Building 79 

 Office hours: by arrangement (via email) 

 Email: tipaldi@cs.uni-freiburg.de 

 

 Mr. Federico Boniardi (assistant) 

 Office: Building 79 

 Office hours: by arrangement (via email) 

 Email: boniardi@cs.uni-freiburg.de 

 

mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de


Website 

http://ais.informatik.uni-freiburg.de/ 

 Go to Teaching (Lehre) SS 2015 

 Choose Theoretical computer science 

 

 Syllabus 

 Slides 

 Exercise 

 Additional material 

http://ais.informatik.uni-freiburg.de/
http://ais.informatik.uni-freiburg.de/
http://ais.informatik.uni-freiburg.de/


Course Facts 

 Course language 

 Lectures are given in English 

 Exercises are given in English 

 Exam will be in English 

 

 Literature 

 Michael Sipser. "Introduction to the 
theory of computation".  
PWS Publishing Co., Boston, MA, 1996  

 



Course Content 

 Theoretical computer science 

 Automata theory 

 Formal languages, grammars 

 Turing machines, decidability 

 Computational complexity 

 

 Introduction to logic 

 Propositional logic 

 First order logic 



Purpose of the Course 

What are the fundamental capabilities 
and limitations of computers? 

 



Purpose of the Course 

What are the fundamental capabilities 
and limitations of computers? 

 

 What does it mean “to compute”? 

  

 What can be computed? 

  

 What can be computed efficiently? 

  



Purpose of the Course 

What are the fundamental capabilities 
and limitations of computers? 

 

 What does it mean “to compute”? 

 Automata theory 

 What can be computed? 

 Computability/Decidability theory 

 What can be computed efficiently? 

 Computational complexity 



The Meaning of “Compute” 

 Various mathematical models  

 Turing machines   1930s 

 Finite state automata  1940s 

 Formal grammars   1950s 

 

 Practical aspects 

 Computer architectures 1970s 

 Programming languages   1970s 

 Compilers     1970s 



Is my Function Computable? 

 Write an algorithm to compute it 

 Can it compute every instance? 

 Will it always give you an answer? 

 Then you are done. 

 If not, there are two choices 

 There is an algorithm but you don’t know 

 There exists no algorithm -> Unsolvable 

 

 Formally prove computability is hard 

 

 

 



Is my Function Computable? 

 Many “known” problems are solvable 

 Sorting 

 Knapsack 

 

 Other problems are not solvable 

 Halting problem 

 Gödel incompleteness theorem 

 

 Don’t try to solve unsolvable problems 

 



Can I Compute it Efficiently? 

 Some problems are “easy” 

 Can we formally define it? 

 

 Complexity theory comes to help 

 Complexity classes 

 Tools for checking class membership 

 

 Important to know how hard it is 



Can I Compute it Efficiently? 

 Feasible problems 

 Sorting, linear programming, LZW 

 Time is polynomial in input 

 Considered-unfeasible problems 

 Scheduling, Knapsack, TSP 

 Big open question: P=NP? 

 Unfeasible problems 

 Quantified boolean formula 

 Time is exponential in input 

 



Homework Assignment 

 Available on Monday 

 On the website 

 Due on Sunday one week after 

 

 Solutions discussed on Monday 

 Questions 

 Email to Federico or to me 

 Google Group 



Homework Rules 

 Group of max 2 people  

 both names, one submission 

 

 Exam is on the same topics: 
Do the exercises! 

 



Exam 

 Written exam at the end 

 Total points at the exam: 100 

 Total points to pass: 50 

 

Rule of thumb: 
 

If you pass 50% of the exercises, you will 
pass the exam 



Questions? 


