
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Introduction

Time and Place

 Lecture

 Today 08:00 – 10:00

 Exercises

 Monday 10:00 – 12:00 (appointment)

 Building 52 – SR 02 017

People

 Dr. Gian Diego Tipaldi (lecturer)

 Office: Building 79

 Office hours: by arrangement (via email)

 Email: tipaldi@cs.uni-freiburg.de

 Mr. Federico Boniardi (assistant)

 Office: Building 79

 Office hours: by arrangement (via email)

 Email: boniardi@cs.uni-freiburg.de

mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de
mailto:tipaldi@cs.uni-freiburg.de

Website

http://ais.informatik.uni-freiburg.de/

 Go to Teaching (Lehre) SS 2015

 Choose Theoretical computer science

 Syllabus

 Slides

 Exercise

 Additional material

http://ais.informatik.uni-freiburg.de/
http://ais.informatik.uni-freiburg.de/
http://ais.informatik.uni-freiburg.de/

Course Facts

 Course language

 Lectures are given in English

 Exercises are given in English

 Exam will be in English

 Literature

 Michael Sipser. "Introduction to the
theory of computation".
PWS Publishing Co., Boston, MA, 1996

Course Content

 Theoretical computer science

 Automata theory

 Formal languages, grammars

 Turing machines, decidability

 Computational complexity

 Introduction to logic

 Propositional logic

 First order logic

Purpose of the Course

What are the fundamental capabilities
and limitations of computers?

Purpose of the Course

What are the fundamental capabilities
and limitations of computers?

 What does it mean “to compute”?

 What can be computed?

 What can be computed efficiently?

Purpose of the Course

What are the fundamental capabilities
and limitations of computers?

 What does it mean “to compute”?

 Automata theory

 What can be computed?

 Computability/Decidability theory

 What can be computed efficiently?

 Computational complexity

The Meaning of “Compute”

 Various mathematical models

 Turing machines 1930s

 Finite state automata 1940s

 Formal grammars 1950s

 Practical aspects

 Computer architectures 1970s

 Programming languages 1970s

 Compilers 1970s

Is my Function Computable?

 Write an algorithm to compute it

 Can it compute every instance?

 Will it always give you an answer?

 Then you are done.

 If not, there are two choices

 There is an algorithm but you don’t know

 There exists no algorithm -> Unsolvable

 Formally prove computability is hard

Is my Function Computable?

 Many “known” problems are solvable

 Sorting

 Knapsack

 Other problems are not solvable

 Halting problem

 Gödel incompleteness theorem

 Don’t try to solve unsolvable problems

Can I Compute it Efficiently?

 Some problems are “easy”

 Can we formally define it?

 Complexity theory comes to help

 Complexity classes

 Tools for checking class membership

 Important to know how hard it is

Can I Compute it Efficiently?

 Feasible problems

 Sorting, linear programming, LZW

 Time is polynomial in input

 Considered-unfeasible problems

 Scheduling, Knapsack, TSP

 Big open question: P=NP?

 Unfeasible problems

 Quantified boolean formula

 Time is exponential in input

Homework Assignment

 Available on Monday

 On the website

 Due on Sunday one week after

 Solutions discussed on Monday

 Questions

 Email to Federico or to me

 Google Group

Homework Rules

 Group of max 2 people

 both names, one submission

 Exam is on the same topics:
Do the exercises!

Exam

 Written exam at the end

 Total points at the exam: 100

 Total points to pass: 50

Rule of thumb:

If you pass 50% of the exercises, you will
pass the exam

Questions?

