Theoretical Computer Science (Bridging Course)

 Mathematical PreliminariesGian Diego Tipaldi

Mathematical Set

- Collection of distinct objects
- Description of a set

$$
\begin{aligned}
\mathcal{A} & =\{1,3,4\} \\
\mathcal{B} & =\left\{x^{2} \mid x \in \mathbb{N}, n \leq 20\right\}
\end{aligned}
$$

- Empty set $\varnothing=\{ \}$
- Set membership

$$
3 \in \mathcal{A} \quad 5 \notin \mathcal{B}
$$

Special Sets

- Subset and proper subset

$$
\{3,4,1\} \subseteq \mathcal{A} \quad\{1,2,4\} \subset \mathcal{B}
$$

- Properties: $\varnothing \subset \mathcal{S} \quad \mathcal{S} \subseteq \mathcal{S}$
- Power set: the set of all subsets

$$
\mathcal{A}=\{1,3,4\}
$$

$$
P(\mathcal{A})=\{\varnothing,\{1\},\{3\},\{4\},\{1,3\},\{1,4\},\{3,4\},\{1,3,4\}\}
$$

- Cartesian product between sets

$$
\mathcal{A}=\{1,3,4\} \quad \mathcal{B}=\{a, b\}
$$

$\mathcal{A} \times \mathcal{B}=\{\{1, a\},\{1, b\},\{3, a\},\{3, b\},\{4, a\},\{4, b\}\}$

Set Operations - Union

- Union is "similar" to addition

$$
\begin{aligned}
\{6,7\} \cup\{8,9\} & =\{6,7,8,9\} \\
\{3,4,1\} \cup\{3,5\} & =\{3,4,1,5\}
\end{aligned}
$$

- Some properties

$$
\begin{aligned}
& \mathcal{A} \cup \mathcal{B}=\mathcal{B} \cup \mathcal{A} \\
& \mathcal{A} \cup(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C} \\
& \mathcal{A} \subseteq \mathcal{A} \cup \mathcal{B} \\
& \mathcal{A} \cup \varnothing=\mathcal{A} \\
& \mathcal{A} \cup \mathcal{A}=\mathcal{A} \\
& \mathcal{A} \subseteq \mathcal{B} \Leftrightarrow \mathcal{A} \cup \mathcal{B}=\mathcal{B}
\end{aligned}
$$

Set Operations - Intersection

- Intersction "takes" the common part

$$
\begin{aligned}
\{6,7\} \cap\{8,9\} & =\varnothing \\
\{3,4,1\} \cap\{3,5\} & =\{3\}
\end{aligned}
$$

- Some properties

$$
\begin{aligned}
& \mathcal{A} \cap \mathcal{B}=\mathcal{B} \cap \mathcal{A} \\
& \mathcal{A} \cap(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C} \\
& \mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A} \\
& \mathcal{A} \cap \varnothing=\varnothing \\
& \mathcal{A} \cap \mathcal{A}=\mathcal{A} \\
& \mathcal{A} \subseteq \mathcal{B} \Leftrightarrow \mathcal{A} \cap \mathcal{B}=\mathcal{A}
\end{aligned}
$$

Mathematical Sequence

- Collection of objects with an order
- Description of a sequence

$$
\begin{aligned}
\mathcal{A} & =(1,3,4,3) \\
\mathcal{B} & =\left(a_{n}\right)_{k=1}^{20} \quad a_{k}=k^{2}
\end{aligned}
$$

- Finite sequences
- K elements -> k-tuples
- 2 elements -> pair
- Infinite sequences

Graph

- Represents objects and relations
- Ordered pair of Vertices and Edges

$$
\begin{aligned}
\mathcal{G} & =(\mathcal{V}, \mathcal{E}) \\
\mathcal{G} & =(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{1,4\},\{2,4\}\})
\end{aligned}
$$

Graph

- Represents objects and relations
- Ordered pair of Vertices and Edges

$$
\begin{aligned}
& \mathcal{G}=(\mathcal{V}, \mathcal{E}) \\
& \mathcal{G}=(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{1,4\},\{2,4\}, \\
& \qquad\{3,4\},\{2,3\}\})
\end{aligned}
$$

Weighted Graph

- Relations are "measurable"
- Associate a number with the edges

$$
\begin{aligned}
& \mathcal{G}=(\mathcal{V}, \mathcal{E}) \\
& \mathcal{G}=(\{1,2,3,4\},\{(0.2,\{1,2\}),(1,\{1,3\}),
\end{aligned}
$$

Subgraph

- Subset of vertices and edges

$$
\begin{aligned}
\mathcal{G} & =(\mathcal{V}, \mathcal{E}) \\
\mathcal{G} & =(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{1,4\},\{2,4\}\}) \\
\mathcal{S} & =(\{1,2,4\},\{\{1,2\},\{1,4\}\})
\end{aligned}
$$

\mathcal{G}

\mathcal{S}

Induced Subgraph

- Subset of vertices and all their edges

$$
\begin{aligned}
& \mathcal{G}=(\mathcal{V}, \mathcal{E}) \\
& \mathcal{G}=(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{1,4\},\{2,4\}\}) \\
& \mathcal{S}=(\{1,2,4\},\{\{1,2\},\{1,4\}, \underline{\{2,4\}}\})
\end{aligned}
$$

\mathcal{G}

\mathcal{S}

Paths in a Graph

- A sequence of vertices and their edges
- No vertices nor edges are repeated

Paths in a Graph

- A sequence of vertices and their edges
- No vertices nor edges are repeated

Paths in a Graph

- A sequence of vertices and their edges
- No vertices nor edges are repeated

Paths in a Graph

- A sequence of vertices and their edges
- No vertices nor edges are repeated

Cycles in a Graph

- A closed path in a graph
- First and last vertex is the same

Trees

- A tree is a special graph - No cycles are present in a tree

Trees

- A tree is a special graph - No cycles are present in a tree

Trees

- A tree is a special graph - No cycles are present in a tree

Trees

- A tree is a special graph - No cycles are present in a tree

Trees

- A tree is a special graph - No cycles are present in a tree

Directed Graph

- Edges are not sets, but ordered pairs

$$
\begin{aligned}
\mathcal{G}=(\{1,2,3,4,5,6\},\{ & (1,2),(3,1),(1,6),(2,4) \\
& (6,2),(3,2),(4,6),(5,6)\})
\end{aligned}
$$

Directed Graph

- Edges are not sets, but ordered pairs

$$
\begin{aligned}
& \mathcal{G}=(\{1,2,3,4,5,6\},\{ (1,2),(3,1),(1,6), \underline{(2,4)}, \\
&\underline{(6,2)},(3,2), \underline{(4,6)},(5,6)\})
\end{aligned}
$$

Directed Acyclic Graph

- Directed graph with no cycles

$$
\begin{aligned}
\mathcal{G}=(\{1,2,3,4,5,6\}, & \{(1,2),(3,1),(1,6),(2,4), \\
& (2,6),(3,2),(4,6),(5,6)\})
\end{aligned}
$$

Strings and Languages

- An alphabet is a set of symbols

$$
\Sigma=\{a, b, c, d\}
$$

- A string is a sequence of symbols

$$
s=a a b b c c d d d d d d c c c a a a
$$

- Length of string = number of symbols
- aabb is a substring of ccaabbbbddd
- $x y$ is the concatenation of x and y
- A language is a set of strings

Mathematical Proofs

- Direct proof
- Proof by construction/counterexample
- Proof by contradiction
- Proof by induction
- Formal enough to be convincing to your audience

Direct Proof

- Derive conclusions from premises
- Start from your assumptions
- Use logic to derive conclusions
- Tricky, must go through definitions
- Hint: try to think "backwards"

Direct Proof

- Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be integers
- If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$, then $\mathrm{a} \mid \mathrm{c}$
- a|b implies it exists k1, s.t. a = k1*b
- b|c implies it exists k2, s.t. b = k2*c
- We get then that $\mathrm{a}=\mathrm{k} 1^{*} \mathrm{k} 2 * \mathrm{c}$
- It exists k = k1*k2, s.t. a = k* c
- This impies a|c

Proof by Construction

- Prove that a particular object exists
- Demonstrate how to construct it
- Alternatively, find a counterexample
- All shapes that have four sides of equal length are squares
- Counterexample: Rhombi

Proof by Construction

- For all even numbers $n>2$, there exists a 3-regular graph with n vertices

$$
\begin{aligned}
\mathcal{G}= & (\mathcal{V}, \mathcal{E}) \\
\mathcal{V}= & \{1, \cdots, n\} \\
\mathcal{E}= & \{\{i, i+1\} \mid 1 \leq i \leq n-1\} \cup\{\{1, n\}\} \cup \\
& \{\{i, i+n / 2\} \mid 1 \leq i \leq n / 2\}
\end{aligned}
$$

Proof by Construction

- For all even numbers $\mathrm{n}>2$, there exists a 3 -regular graph with n vertices

$$
\begin{aligned}
\mathcal{G}= & (\mathcal{V}, \mathcal{E}) \\
\mathcal{V}= & \{1, \cdots, n\} \\
\mathcal{E}= & \{\{i, i+1\} \mid 1 \leq i \leq n-1\} \cup\{\underline{\{1, n\}}\} \cup \\
& \{\{i, i+n / 2\} \mid 1 \leq i \leq n / 2\}
\end{aligned}
$$

Proof by Construction

- For all even numbers $n>2$, there exists a 3-regular graph with n vertices

$$
\begin{aligned}
\mathcal{G}= & (\mathcal{V}, \mathcal{E}) \\
\mathcal{V}= & \{1, \cdots, n\} \\
\mathcal{E}= & \{\{i, i+1\} \mid 1 \leq i \leq n-1\} \cup\{\{1, n\}\} \cup \\
& \{\{i, i+n / 2\} \mid 1 \leq i \leq n / 2\}
\end{aligned}
$$

- Why do we need $n>2$?

Proof by Contradiction

- Assume the theorem is not true
- Show that it leads to a contradiction
- It violates the premises
- It violates some postulates/axioms
- Hence, the theorem must be true
- Example: $\sqrt{2}$ is irrational

Proof by Contradiction

- Assume $\sqrt{2}$ is rational
$\sqrt{2}=\frac{a}{b} \quad$ where a and b are integers and $\frac{a}{b}$ is reduced

$$
2=\frac{a^{2}}{b^{2}}
$$

$2 b^{2}=a^{2} \quad a^{2}$ is even, hence $a=2 c$ is even $2 b^{2}=4 c^{2}$
$b^{2}=2 c^{2} \quad b^{2}$ is even, hence $b=2 d$ is even
$\frac{a}{b}=\frac{2 c}{2 d} \quad \frac{a}{b}$ is not reduced, contradiction

Proof by Induction

- Prove a statement for a set of objects
- Base: prove it for a "small" object
- Induction: prove it for "bigger" objects assuming it holds for "smaller" ones
- Natural numbers
- Inductively defined objects

Inductively Defined Objects

- Objects are created by "adding" parts - Object definition is recursive

Example: Rooted binary trees

- Base: A node is a tree
- Induction:
- T1 and T2 are rooted binary trees
- Take a node N , it is the new root
- Add edges from N to T1 and T2

Proof by Induction

- Theorem:
- A binary tree with n leaves has $2 n-1$ nodes
- Base:
- A tree with one leaf has $2 * 2-1=1$ node
- A one leaf tree is a single node tree

Proof by Induction

- Induction:
- Take a tree T with two subtrees U and V
- Assume the theorem holds for U and V
- U has x leaves and $2 x-1$ nodes
- V has y leaves and $2 y-1$ nodes
- T has $z=x+y$ leaves
- T has $2 \mathrm{x}-1+2 \mathrm{y}-1+1=$

$$
\begin{aligned}
& 2(x+y)-1= \\
& 2 z-1 \text { nodes }
\end{aligned}
$$

Summary

- Sets, subsets, power sets
- Graphs and subgraphs
- Strings and languages
- Mathematical proofs
- Direct
- Construction
- Contradiction
- Induction

