Theoretical Computer Science (Bridging Course)

Turing Machines

Gian Diego Tipaldi

Topics Covered

- Turing machines
- Variants of Turing machines
- Multi-tape
- Non-deterministic
- Definition of algorithm
- The Church-Turing Thesis

Finite State Automata

- Can be simplified as follow

- State control for states and transitions
- Tape to store the input string

Pushdown Automata

- Introduce a stack component

- Symbols can be read and written there

Turing Machine (TM)

- Introduce an infinite tape

- Symbols can be read and written there
- Move left and right on the tape
- Machine accepts, rejects, or loops

Turing Machine (TM)

- Let's design one for the language

$$
F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}
$$

- How will it work?
- Remember:
- It has the string on the tape
- It can go left and right
- It can write symbols on the tape

Turing Machine (TM)

$$
F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}
$$

The machine does this:

- Scan to check there is only one \#
- Zig-zag across \# and read symbols
- If do not match reject
- If they match write the symbol x
- If all symbols left to \# matche, accept

Turing Machine (TM)

$$
\begin{gathered}
F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\} \\
w_{1} \in F=" 011000 \# 011000 "
\end{gathered}
$$

\downarrow	1	1	0	0	0	$\#$	0	1	1	0	0	0	\sqcup	\ldots
\mathbf{X}	1	1	0	0	0	$\#$	0	1	1	0	0	0	\sqcup	\ldots
X	1	1	1											
X	1	1	0	0	0	$\#$	X	1	1	0	0	0	\sqcup	\ldots
X	1	1	0	0	0	$\#$	X	1	1	0	0	0	\sqcup	\ldots
X	X	1	0	0	0	$\#$	X	1	1	0	0	0	\sqcup	\ldots
\vdots												\searrow		
X	X	X	X	X	X	$\#$	X	X	X	X	X	X	\sqcup	\ldots

Formal Definition of a TM

A Turing machine is a 7-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{o}, q_{\text {accept }}, q_{\text {reject }}\right)$

- Q is the set of states
- Σ is the input alphabet, without \sqcup
- Γ is the tape alphabet and $\sqcup \in \Gamma, \Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function
- $q_{0} \in Q$ is the initial state
- $q_{\text {accept }}, q_{\text {reject }} \in Q$ are the final states

TM Configurations

- Describe the state of the machine
- Written as $C=u q_{i} v$ where:
- q_{i} is the current state of the machine
- $u v$ is the content of the tape
- The head stays at the first symbol of v

TM Transitions

- A configuration C_{1} yields C_{2} if the machine can go from C_{1} to C_{2} in 1 step
- $u a q_{i} b v$ yields $u q_{j} a c v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
- $u a q_{i} b v$ yields $u a c q_{j} v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$
- Note: cannot go over the left border!

TM Acceptance

- The machine starts at $q_{0} w$
- The machine accepts at $q_{\text {accept }}$
- The machine rejects at $q_{\text {reject }}$
- An input is accepted if there is C_{1}, \ldots, C_{k} - The machine starts at C_{1}
- Each C_{i} yields C_{i+1}
- C_{k} is an accepting state

Computations and Deciders

- Three possible outcomes:
- It ends in an accept state
- It ends in a reject state
- It does not end (loops forever)
- Accept and reject are halting states
- Loops are not halting
- A Decider halts on every input

TMs and Languages

- The strings a TM M accepts define the language of $M, \mathrm{~L}(M)$
- A language is Turing recognizable (recursively enumerable) if some TM recognizes it
- A language is Turing decidable (recursive) if some TM decides it

TM Example

TM M_{2} recognizes the language consisting of all strings of zeros with their length being a power of 2 . In other words, it decides the language

$$
A=\left\{0^{2^{n}} \mid n \geq 0\right\}
$$

TM Example

$$
A=\left\{0^{2^{n}} \mid n \geq 0\right\}
$$

1.Sweep left to right accross the tape, crossing off every other 0
2.If the tape has a single 0, accept
3.If the tape has more than one 0 and the number of 0 s is odd, reject
4.Return the head to the left
5.Go to stage 1

TM Example

Another TM Example

$$
F=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}
$$

1. Check for \#, if not reject
2.Zig-zag across and cross off same symbols. If not same, reject
3.If all left of \# are crossed, check for non crossed symbols on the right side
4.If none, accept, otherwise reject

Another TM Example

Variants of Turing Machines

- Mostly equivalent to the original
- Example: consider movements as $\{L, R, S\}$, where S means stay still
- Equivalent to original, represent S as two transitions: first R, then L or vice versa

Multi-Tape Turing Machine

- Include multiple tapes and heads

- Input on first tape, the others blank
- Transitions $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}$

Equivalence Result

Theorem 3.13:
Every multitape Turing machine has an equivalent single-tape Turing machine.

Equivalence Result

Theorem 3.13:
Every multitape Turing machine has an equivalent single-tape Turing machine.

Equivalence Result

Theorem 3.13:
Every multitape Turing machine has an equivalent single-tape Turing machine.

S

Proof of Theorem 3.13

- Consider a input $w_{1} w_{2} \ldots w_{k}$
- Add dotted symbols for the head
- Put all the input on the single tape $\# \dot{w}_{1} w_{2} \ldots w_{k} \# \dot{ப} \#$ ப் \# ... \#
- Simulate a single move
- Scan from first \# to last to get the heads - Re-run to update the tape
- If head symbols go to the right \# write a blank and shift the tape content

Equivalence Result

Corollary 3.15:
A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it

Proof:

Forward: an ordinary machine is a special case of a multi-tape Backward: see Theorem 3.13

Intermezzo: Programming

"Brainfuck": language simulating a TM

Character	Meaning
$>$	increment the data pointer (to point to the next cell to the right). R
$<$	decrement the data pointer (to point to the next cell to the left). L
+	increment (increase by one) the byte at the data pointer.
-	decrement (decrease by one) the byte at the data pointer.
.	output a character, the ASCII value of which being the byte at the data pointer.
,	accept one byte of input, storing its value in the byte at the data pointer.
[if the byte at the data pointer is zero, then instead of moving the instruction pointer forward to the next command, jump it forward to the command after the matching] command.	
]if the byte at the data pointer is nonzero, then instead of moving the instruction pointer forward to the next command, jump it back to the command after the matching [command*.	

(http://en.wikipedia.org/wiki/Brainfuck)

Non Deterministic TMs (NTMs)

- Transition function changed into

$$
\begin{aligned}
& \delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{L, R\}) \\
& \delta(q, a)=\left\{\left(q_{1}, b_{1}, L\right), \ldots,\left(q_{k}, b_{k}, R\right)\right\}
\end{aligned}
$$

- Same idea as for NFAs

Equivalence of NTMs and TMs

Theorem 3.16:
Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Idea:

- Three tapes: input, simulation, index
- Simulator to perform computation
- Index to trace the path in the tree

Equivalence of NTMs and TMs

Theorem 3.16:
Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof of Theorem 3.16

1. Copy the input from tape 1 to 2
2. Use tape 2 to simulate N on one branch of computation
a. Consult tape 3 to get the transition b. Abort if empty symbol, invalid or reject c. Accept if accept state
3. Replace the string on 3 with the lexicographically next one
4. Repeat from 1.

NTMs and Languages

Corollary 3.18:
A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

Corollary 3.19:
A language is decidable if and only if some nondeterministic Turing machine decides it.

Enumerators

- Recursively enumerable languages
- Recognized by TMs
- Alternative model: Enumerator

Enumerators

- Enumerate the strings
- Start with empty tape
- Output tape (printer)
- Print strings instead of accepting them
- Printing in any order
- Strings might be duplicated

Equivalence Result

Theorem 3.21:
A language is Turing-recognizable if and only if some enumerators enumerate it.

Proof:

Forward: e have an enumerator E .
We can build a machine T that

1. Run E and compare every string
2. If it appears, accept

Equivalence Result

Backward: We have a machine T .
We can build an enumerator E as this:

1. Ignore the input
2. For each $i=1,2, \ldots$
3. Run T for i steps on each input in Σ^{*}
4. If any computation accepts, print it.

E eventually prints all string T accepts

Other Variants of TMs

- Many other variants of TMs exist
- All equivalent in power under reasonable assumptions
- Turing complete languages
- The class of algorithms described identical for all these languages.
- For a given task, one type of language may be more elegant or simple.

Definition of Algorithm

- Precise definition only in $20^{\text {th }}$ century
- Informal idea was already present
- Collection of instructions for a task
- Formal definition needed to be found

Anecdote: David Hilbert

- Famous mathematician
- Int. congress of Maths in 1900
- Formulated 23 math problems
- The $10^{\text {th }}$ problem said:
- Devise an algorithm to test whether a polynomial has an integral root
- Algorithm = "a process according to which it can be determined by a finite number of operations"

Anecdote: David Hilbert

- Mathematicians believed it existed - We know it is not possible
- A formal definition of algorithm was needed to prove it
- Alonso Church : λ-calculus
- Alan Turing: Turing machines
- Church-Turing Thesis:
- Intuitive algorithm = TM algorithm

Formal Definition of Algorithm

- Let's rephrase Hilbert problem
- Consider the set
$D=\{p \mid p$ is a polynomial with integer root $\}$
- Hilbert problem asks if D is decidable
- Unfortunately it is not
- Fortunately is Turing recognizable

Formal Definition of Algorithm

- Consider a simpler problem
$D_{1}=\{p \mid p$ is a poly. over x with integer root $\}$
- Build a TM that recognizes it

1. Input is a polynomial over x
2. Evaluate p with $x=0,1,-1,2,-2, \ldots$
3. If polynomial evaluates to 0 , accept

Formal Definition of Algorithm

- Describe an algorithm equals to describe a Turing machine
- Three possibilities:
- Formal description (low level)
- Implementation description (mid level)
- English description (high level)
- We will describe machines in high level

Turing Machine Description

- Input is always a string
- Objects represented as strings
- Encoding is irrelevant (equivalence)
- TM Algorithm will be high level
- First line describe the input
- Indentations describe blocks

Example description

$A=\{\langle G\rangle \mid G$ is a connected undirected graph $\}$ Remember the definition of connected?

Example description

$A=\{\langle G\rangle \mid G$ is a connected undirected graph $\}$ Remember the definition of connected? Every node is reachable from every one

Example description

$$
<G>=(1,2,3,4)((1,2),(2,3),(3,1),(1,4))
$$

$M=$,On input <G>, the encoding of a graph G :

1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked. 1. For each node in G, mark it if it is attached by an edge to a node that is already marked.
3. Scan all the nodes of G to determine whether they all are marked.
If yes, accept; otherwise reject."

Summary

- Turing machines
- Variants of Turing machines
- Multi-tape
- Non-deterministic
- The definition of algorithm
- The Church-Turing Thesis

