Theoretical Computer Science (Bridging Course)

Turing Machines

Gian Diego Tipaldi

Topics Covered

- Turing machines
- Variants of Turing machines
 - Multi-tape
 - Non-deterministic
- Definition of algorithm
- The Church-Turing Thesis

Finite State Automata

Can be simplified as follow

- State control for states and transitions
- Tape to store the input string

Pushdown Automata

Introduce a stack component

Symbols can be read and written there

Introduce an infinite tape

- Symbols can be read and written there
- Move left and right on the tape
- Machine accepts, rejects, or loops

- Let's design one for the language $F = \{w \# w \mid w \in \{0,1\}^*\}$
- How will it work?

- Remember:
 - It has the string on the tape
 - It can go left and right
 - It can write symbols on the tape

$$F = \{w \# w \mid w \in \{0,1\}^*\}$$

The machine does this:

- Scan to check there is only one #
- Zig-zag across # and read symbols
- If do not match reject
- If they match write the symbol x
- If all symbols left to # matche, accept

$F = \{w \# w \mid w \in \{0,1\}^*\}$ $w_1 \in F = "011000 \# 011000"$

Formal Definition of a TM

A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$

- Q is the set of states
- Σ is the input alphabet, without \sqcup
- Γ is the tape alphabet and $\sqcup \in \Gamma, \Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function
- $q_0 \in Q$ is the initial state
- $q_{accept}, q_{reject} \in Q$ are the final states

TM Configurations

- Describe the state of the machine
- Written as $C = uq_i v$ where:
 - q_i is the current state of the machine
 - uv is the content of the tape
 - The head stays at the first symbol of v

TM Transitions

- A configuration C₁ yields C₂ if the machine can go from C₁ to C₂ in 1 step
- uaq_ibv yields uq_jacv if $\delta(q_i, b) = (q_j, c, L)$
- uaq_ibv yields $uacq_jv$ if $\delta(q_i, b) = (q_j, c, R)$
- Note: cannot go over the left border!

TM Acceptance

- The machine starts at $q_0 w$
- The machine accepts at q_{accept}
- The machine rejects at q_{reject}

- An input is accepted if there is C_1, \ldots, C_k
 - The machine starts at C₁
 - Each C_i yields C_{i+1}
 - C_k is an accepting state

Computations and Deciders

- Three possible outcomes:
 - It ends in an accept state
 - It ends in a reject state
 - It does not end (loops forever)
- Accept and reject are halting states
- Loops are not halting
- A Decider halts on every input

TMs and Languages

- The strings a TM M accepts define the language of M, L(M)
- A language is Turing recognizable (recursively enumerable) if some TM recognizes it

 A language is Turing decidable (recursive) if some TM decides it

TM Example

TM *M*₂ recognizes the language consisting of all strings of zeros with their length being a power of 2. In other words, it decides the language

$$A = \{ 0^{2^n} \mid n \ge 0 \}.$$

TM Example

$$A = \left\{ 0^{2^n} \mid n \ge 0 \right\}$$

- 1.Sweep left to right accross the tape, crossing off every other 0
- 2. If the tape has a single 0, accept
- **3.**If the tape has more than one 0 and the number of 0s is odd, *reject*
- 4. Return the head to the left
- 5.Go to stage 1

TM Example

Another TM Example

$$F = \{w \# w \mid w \in \{0,1\}^*\}$$

- 1.Check for #, if not reject
- 2.Zig-zag across and cross off same symbols. If not same, *reject*
- **3.**If all left of # are crossed, check for non crossed symbols on the right side
- 4. If none, *accept*, otherwise *reject*

Another TM Example

Variants of Turing Machines

Mostly equivalent to the original

- Example: consider movements as {L,R,S}, where S means stay still
- Equivalent to original, represent S as two transitions: first R, then L or vice versa

Multi-Tape Turing Machine

Include multiple tapes and heads

- Input on first tape, the others blank
- Transitions $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$

Theorem 3.13:

Every multitape Turing machine has an equivalent single-tape Turing machine.

<u>Theorem 3.13</u>:

Every multitape Turing machine has an equivalent single-tape Turing machine.

<u>Theorem 3.13</u>:

Every multitape Turing machine has an equivalent single-tape Turing machine.

Proof of Theorem 3.13

- Consider a input $w_1 w_2 \dots w_k$
- Add dotted symbols for the head
- Put all the input on the single tape $\#\dot{w}_1w_2 \dots w_k \# \ \ \# \ \# \ \# \ \# \ \#$
- Simulate a single move
 - Scan from first # to last to get the heads
 - Re-run to update the tape
- If head symbols go to the right # write a blank and shift the tape content

Corollary 3.15:

A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it

Proof:

Forward: an ordinary machine is a special case of a multi-tape Backward: see Theorem 3.13

Intermezzo: Programming

"Brainfuck": language *simulating* a TM

Character	Meaning
>	increment the data pointer (to point to the next cell to the right). R
<	decrement the data pointer (to point to the next cell to the left). L
+	increment (increase by one) the byte at the data pointer.
-	decrement (decrease by one) the byte at the data pointer.
•	output a character, the ASCII value of which being the byte at the data pointer.
,	accept one byte of input, storing its value in the byte at the data pointer.
[if the byte at the data pointer is zero, then instead of moving the <u>instruction pointer</u> forward to the next command, jump it forward to the command after the matching] command.
]	if the byte at the data pointer is nonzero, then instead of moving the instruction pointer forward to the next command, jump it back to the command after the matching [command*.

(http://en.wikipedia.org/wiki/Brainfuck)

Non Deterministic TMs (NTMs)

 q_1

 q_1

 q_1

q₂

 q_1

 \mathbf{q}_3

 q_4

 q_2

 \mathbf{q}_3

 q_4

 q_4

- Transition function changed into $\delta: Q \times \Gamma \to P(Q \times \Gamma \times \{L, R\})$ $\delta(q, a) = \{(q_1, b_1, L), \dots, (q_k, b_k, R)\}$
- Same idea as for NFAs

Equivalence of NTMs and TMs

Theorem 3.16:

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Idea:

- Three tapes: input, simulation, index
- Simulator to perform computation
- Index to trace the path in the tree

Equivalence of NTMs and TMs

Theorem 3.16:

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof of Theorem 3.16

- 1. Copy the input from tape 1 to 2
- Use tape 2 to simulate N on one branch of computation
 - a. Consult tape 3 to get the transition
 - b. Abort if empty symbol, invalid or reject
 - c. Accept if accept state
- Replace the string on 3 with the lexicographically next one
- 4. Repeat from 1.

NTMs and Languages

Corollary 3.18:

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

Corollary 3.19:

A language is decidable if and only if some nondeterministic Turing machine decides it.

Enumerators

- Recursively enumerable languages
- Recognized by TMs
- Alternative model: Enumerator

Enumerators

- Enumerate the strings
- Start with empty tape
- Output tape (printer)
- Print strings instead of accepting them
- Printing in any order
- Strings might be duplicated

Theorem 3.21:

A language is Turing-recognizable if and only if some enumerators enumerate it.

Proof:

Forward: e have an enumerator E.We can build a machine T that1. Run E and compare every string2. If it appears, accept

Backward: We have a machine T. We can build an enumerator E as this:

- 1. Ignore the input
- **2.** For each i = 1, 2, ...
 - **1.** Run T for i steps on each input in Σ^*
 - 2. If any computation accepts, print it.

E eventually prints all string T accepts

Other Variants of TMs

- Many other variants of TMs exist
- All equivalent in power under reasonable assumptions
- Turing complete languages
- The class of algorithms described identical for all these languages.
- For a given task, one type of language may be more elegant or *simple*.

Definition of Algorithm

- Precise definition only in 20th century
- Informal idea was already present
- Collection of instructions for a task
- Formal definition needed to be found

Anecdote: David Hilbert

- Famous mathematician
- Int. congress of Maths in 1900
- Formulated 23 math problems
- The 10th problem said:
 - Devise an *algorithm* to test whether a polynomial has an integral root
 - Algorithm = "a process according to which it can be determined by a finite number of operations"

Anecdote: David Hilbert

- Mathematicians believed it existed
- We know it is not possible
- A formal definition of algorithm was needed to prove it
- Alonso Church : λ-calculus
- Alan Turing: Turing machines
- Church—Turing Thesis:
 - Intuitive algorithm = TM algorithm

Formal Definition of Algorithm

- Let's rephrase Hilbert problem
- Consider the set
 - $D = \{p \mid p \text{ is a polynomial with integer root}\}$
- Hilbert problem asks if D is decidable
- Unfortunately it is not
- Fortunately is Turing recognizable

Formal Definition of Algorithm

- Consider a simpler problem
 - $D_1 = \{p \mid p \text{ is a poly. over } x \text{ with integer root} \}$
- Build a TM that recognizes it
 - 1. Input is a polynomial over x
 - **2.** Evaluate p with x=0,1,-1,2,-2,...
 - **3.** If polynomial evaluates to 0, accept

Formal Definition of Algorithm

- Describe an algorithm equals to describe a Turing machine
- Three possibilities:
 - Formal description (low level)
 - Implementation description (mid level)
 - English description (high level)
- We will describe machines in high level

Turing Machine Description

- Input is always a string
- Objects represented as strings
- Encoding is irrelevant (equivalence)
- TM Algorithm will be high level
- First line describe the input
- Indentations describe blocks

Example description

 $A = \{\langle G \rangle | G \text{ is a connected undirected graph} \}$ Remember the definition of connected?

Example description

 $A = \{\langle G \rangle | G \text{ is a connected undirected graph} \}$ Remember the definition of connected? Every node is reachable from every one

Example description

 $\langle G \rangle = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4))$

- M = "On input <G>, the encoding of a graph G:
- 1. Select the first node of G and mark it.
- 2. Repeat the following stage until no new nodes are marked.
 - 1. For each node in G, mark it if it is attached by an edge to a node that is already marked.
- 3. Scan all the nodes of G to determine whether they all are marked.

If yes, accept; otherwise reject."

Summary

- Turing machines
- Variants of Turing machines
 - Multi-tape
 - Non-deterministic
- The definition of algorithm
 - The Church-Turing Thesis