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Finite State Automata 

 Can be simplified as follow 

 

 

 

 

 

 State control for states and transitions 

 Tape to store the input string 
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Pushdown Automata 

 Introduce a stack component 

 

 

 

 

 

 

 Symbols can be read and written there 
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Turing Machine (TM) 

 Introduce an infinite tape 

 

 

 

 
 

 Symbols can be read and written there 

 Move left and right on the tape 

 Machine accepts, rejects, or loops 
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Turing Machine (TM)   

 Let’s design one for the language 
𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

 How will it work? 

 

 Remember: 

 It has the string on the tape 

 It can go left and right 

 It can write symbols on the tape 



Turing Machine (TM)   

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

The machine does this: 

 Scan to check there is only one # 

 Zig-zag across # and read symbols 

 If do not match reject 

 If they match write the symbol x  

 If all symbols left to # matche, accept 



Turing Machine (TM)   

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 
𝑤1 ∈ 𝐹 = "011000#011000" 

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

⋮ 

X X X X X X # X X X X X X ⊔ … 

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ … 

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ … 



Formal Definition of a TM 

A Turing machine is a 7-tuple  
  (𝑄, Σ, Γ, 𝛿, 𝑞𝑜, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡) 

 𝑄 is the set of states 

 Σ is the input alphabet, without ⊔ 

 Γ is the tape alphabet and ⊔∈ Γ, Σ ⊆ Γ 

 𝛿: 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅} is the transition 
function 

 𝑞0 ∈ 𝑄 is the initial state 

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ∈ 𝑄 are the final states 

 

 



TM Configurations 

 Describe the state of the machine 

 Written as 𝐶 = 𝑢𝑞𝑖𝑣 where: 

 𝑞𝑖 is the current state of the machine 

 𝑢𝑣 is the content of the tape 

 The head stays at the first symbol of 𝑣 



TM Transitions  

 A configuration 𝐶1 yields 𝐶2 if the 

machine can go from 𝐶1 to 𝐶2 in 1 step 

 𝑢𝑎𝑞𝑖𝑏𝑣 yields 𝑢𝑞𝑗𝑎𝑐𝑣 if 𝛿 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝐿  
 

 𝑢𝑎𝑞𝑖𝑏𝑣 yields 𝑢𝑎𝑐𝑞𝑗𝑣 if 𝛿 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝑅  
 

 Note: cannot go over the left border! 

 



TM Acceptance 

 The machine starts at 𝑞0𝑤 

 The machine accepts at 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 

 The machine rejects at 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 

 

 An input is accepted if there is 𝐶1, … , 𝐶𝑘 

 The machine starts at 𝐶1 

 Each 𝐶𝑖 yields 𝐶𝑖+1 

 𝐶𝑘 is an accepting state 

 



Computations and Deciders 

 Three possible outcomes: 

 It ends in an accept state 

 It ends in a reject state 

 It does not end (loops forever) 

 

 Accept and reject are halting states 

 Loops are not halting 

 A Decider halts on every input 

 



TMs and Languages 

 The strings a TM 𝑀 accepts define the 
language of 𝑀 , L(𝑀)  

 

 A language is Turing recognizable 
(recursively enumerable) if some TM 
recognizes it 

 

 A language is Turing decidable 
(recursive) if some TM decides it 

 



TM Example 

TM 𝑀2 recognizes the language 
consisting of all strings of zeros with 
their length being a power of 2. In other 
words, it decides the language 

𝐴 = 02
𝑛
  𝑛 ≥ 0}. 



TM Example 

𝐴 = 02
𝑛
  𝑛 ≥ 0} 

 

1.Sweep left to right accross the tape, 
crossing off every other 0 

2.If the tape has a single 0, accept 

3.If the tape has more than one 0 and 
the number of 0s is odd, reject 

4.Return the head to the left 

5.Go to stage 1 

 

 



TM Example 
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q5 

q3 
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qreject 

0→□,R 0 → x,R 

□ →R 
x → R 

□ → R 

□ → R 

x → R 

x →  R 

x → R 

0 → L 
x → L 

0 → x,R 

0 → R 



Another TM Example 

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

 

1.Check for #, if not reject 

2.Zig-zag across and cross off same 
symbols. If not same, reject  

3.If all left of # are crossed, check for 
non crossed symbols on the right side 

4.If none, accept, otherwise reject 

 

 



Another TM Example 

 

 

 



Variants of Turing Machines 

 Mostly equivalent to the original 

 

 Example: consider movements as 
{L,R,S}, where S means stay still 

 Equivalent to original, represent S as 
two transitions: first R, then L or vice 
versa 



Multi-Tape Turing Machine 

 Include multiple tapes and heads 

 

 

 

 

 
 

 Input on first tape, the others blank 

 Transitions 𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘 

 

M 
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Equivalence Result 

Theorem 3.13: 

Every multitape Turing machine has an 
equivalent single-tape Turing machine. 

 



Equivalence Result 

Theorem 3.13: 

Every multitape Turing machine has an 
equivalent single-tape Turing machine. 
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Equivalence Result 

Theorem 3.13: 

Every multitape Turing machine has an 
equivalent single-tape Turing machine. 

 

M 

0 0 1 1 

b a b 

a b 

S 0 0 1 1 # b a b a b # # 



Proof of Theorem 3.13 

 Consider a input 𝑤1𝑤2…𝑤𝑘 

 Add dotted symbols for the head 

 Put all the input on the single tape  
#𝑤1 𝑤2…𝑤𝑘# ⊔ # ⊔ #…# 

 Simulate a single move 

 Scan from first # to last to get the heads 

 Re-run to update the tape 

 If head symbols go to the right # write 
a blank and shift the tape content 

 



Equivalence Result 

Corollary 3.15: 

A language is Turing-recognizable if and 
only if some multi-tape Turing machine 
recognizes it 

 

Proof: 

Forward: an ordinary machine is a 
special case of a multi-tape 

Backward: see Theorem 3.13 



Intermezzo: Programming 

“Brainfuck”: language simulating a TM 

Character Meaning 

> increment the data pointer (to point to the next cell to the right). R 

< decrement the data pointer (to point to the next cell to the left). L 

+ increment (increase by one) the byte at the data pointer. 

- decrement (decrease by one) the byte at the data pointer. 

. 
output a character, the ASCII value of which being the byte at the data 
pointer. 

, accept one byte of input, storing its value in the byte at the data pointer. 

[ 
if the byte at the data pointer is zero, then instead of moving the 
instruction pointer forward to the next command, jump it forward to the 
command after the matching ] command. 

] 
if the byte at the data pointer is nonzero, then instead of moving the 
instruction pointer forward to the next command, jump it back to the 
command after the matching [ command*. 

(http://en.wikipedia.org/wiki/Brainfuck) 

http://en.wikipedia.org/wiki/Program_Counter
http://en.wikipedia.org/wiki/Branch_(computer_science)


Non Deterministic TMs (NTMs) 

 Transition function changed into 

 𝛿: 𝑄 × Γ → 𝑃 𝑄 × Γ × 𝐿, 𝑅  

 𝛿 𝑞, 𝑎 = 𝑞1, 𝑏1, 𝐿 , … , 𝑞𝑘 , 𝑏𝑘 , 𝑅  

 

 Same idea as for NFAs 
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Equivalence of NTMs and TMs 

Theorem 3.16: 

Every nondeterministic Turing machine 
has an equivalent deterministic Turing 
machine. 

 

Idea: 

 Three tapes: input, simulation, index 

 Simulator to perform computation 

 Index to trace the path in the tree 

 



Equivalence of NTMs and TMs 

Theorem 3.16: 

Every nondeterministic Turing machine 
has an equivalent deterministic Turing 
machine. 

 

Idea: 

 Three tapes: input, simulation, index 

 Simulator to perform computation 

 Index to trace the path in the tree 

 



Proof of Theorem 3.16 

1. Copy the input from tape 1 to 2 

2. Use tape 2 to simulate N on one 
branch of computation 

a. Consult tape 3 to get the transition 

b. Abort if empty symbol, invalid or reject 

c. Accept if accept state 

3. Replace the string on 3 with the 
lexicographically next one 

4. Repeat from 1. 



NTMs and Languages 

Corollary 3.18: 

A language is Turing-recognizable if and 
only if some nondeterministic Turing 
machine recognizes it. 

 

Corollary 3.19: 

A language is decidable if and only if 
some nondeterministic Turing machine 
decides it. 

 



Enumerators 

 Recursively enumerable languages 

 Recognized by TMs 

 Alternative model: Enumerator 

 

state 
control 
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Enumerators 

 Enumerate the strings  

 Start with empty tape 

 Output tape (printer) 

 Print strings instead of accepting them 

 

 Printing in any order 

 Strings might be duplicated 

 

 



Equivalence Result 

Theorem 3.21: 

A language is Turing-recognizable if and 
only if some enumerators enumerate it. 

 

Proof: 

Forward: e have an enumerator E.  

We can build a machine T that 

1. Run E and compare every string  

2. If it appears, accept 



Equivalence Result 

Backward: We have a machine T.  

We can build an enumerator E as this: 

 

1. Ignore the input 

2. For each i = 1,2,… 

1. Run T for i steps on each input in Σ∗ 

2. If any computation accepts, print it. 

 

E eventually prints all string T accepts 

 



Other Variants of TMs 

 Many other variants of TMs exist 

 All equivalent  in power under 
reasonable assumptions  

 Turing complete languages 

 The class of algorithms described 
identical for all these languages. 

 For a given task, one type of language 
may be more elegant or simple. 

 



Definition of Algorithm 

 Precise definition only in 20th century 

 

 Informal idea was already present 

 

 Collection of instructions for a task 

 

 Formal definition needed to be found 



Anecdote: David Hilbert 

 Famous mathematician  

 Int. congress of Maths in 1900 

 Formulated 23 math problems 

 

 The 10th problem said: 

 Devise an algorithm to test whether a 
polynomial has an integral root 

 Algorithm = “a process according to 
which it can be determined by a finite 
number of operations” 

 



Anecdote: David Hilbert 

 Mathematicians believed it existed 

 We know it is not possible 

 A formal definition of algorithm was 
needed to prove it 

 Alonso Church : 𝜆-calculus 

 Alan Turing: Turing machines 

 Church—Turing Thesis:  

 Intuitive algorithm = TM algorithm 

 



Formal Definition of Algorithm 

 Let’s rephrase Hilbert problem 

 Consider the set 

𝐷 = 𝑝  𝑝 is a polynomial with integer root} 

 Hilbert problem asks if D is decidable 

 Unfortunately it is not 

 Fortunately is Turing recognizable 



Formal Definition of Algorithm 

 Consider a simpler problem 

𝐷1 = 𝑝  𝑝 is a poly. over 𝑥 with integer root} 

 Build a TM that recognizes it 

1. Input is a polynomial over x 

2. Evaluate p with x=0,1,-1,2,-2,… 

3. If polynomial evaluates to 0, accept 



Formal Definition of Algorithm 

 Describe an algorithm equals to 
describe a Turing machine 

 Three possibilities: 

 Formal description (low level) 

 Implementation description (mid level) 

 English description (high level) 

 

 We will describe machines in high level 



Turing Machine Description 

 Input is always a string 

 Objects represented as strings 

 Encoding is irrelevant (equivalence) 

 TM Algorithm will be high level 

 First line describe the input 

 Indentations describe blocks 



Example description 

𝐴 = {⟨𝐺⟩|  𝐺 is a connected undirected graph} 

Remember the definition of connected? 

 



Example description 

𝐴 = {⟨𝐺⟩|  𝐺 is a connected undirected graph} 

Remember the definition of connected? 

Every node is reachable from every one 

 4 

1 

2 3 

G = 



Example description 

 

 

 

 

 

 

M = „On input <G>, the encoding of a graph G: 

1. Select the first node of G and mark it. 

2. Repeat the following stage until no new nodes are marked. 

1. For each node in G, mark it if it is attached by an edge to 
a node that is already marked. 

3. Scan all the nodes of G to determine whether they all are 
marked. 
If yes, accept; otherwise reject.“ 

 

4 

1 

2 3 

G = <G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4)) 



Summary 

 Turing machines  

 Variants of Turing machines 

 Multi-tape 

 Non-deterministic 

 The definition of algorithm 

 The Church-Turing Thesis 


