
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Turing Machines

Topics Covered

 Turing machines

 Variants of Turing machines

 Multi-tape

 Non-deterministic

 Definition of algorithm

 The Church-Turing Thesis

Finite State Automata

 Can be simplified as follow

 State control for states and transitions

 Tape to store the input string

state
control

a a b b

input

Pushdown Automata

 Introduce a stack component

 Symbols can be read and written there

state
control

a a b b

input
a

a

b

stack

Turing Machine (TM)

 Introduce an infinite tape

 Symbols can be read and written there

 Move left and right on the tape

 Machine accepts, rejects, or loops

state
control

a a b b

input

Turing Machine (TM)

 Let’s design one for the language
𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

 How will it work?

 Remember:

 It has the string on the tape

 It can go left and right

 It can write symbols on the tape

Turing Machine (TM)

𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

The machine does this:

 Scan to check there is only one #

 Zig-zag across # and read symbols

 If do not match reject

 If they match write the symbol x

 If all symbols left to # matche, accept

Turing Machine (TM)

𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}
𝑤1 ∈ 𝐹 = "011000#011000"

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ …

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ …

⋮

X X X X X X # X X X X X X ⊔ …

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ …

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ …

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ …

Formal Definition of a TM

A Turing machine is a 7-tuple
 (𝑄, Σ, Γ, 𝛿, 𝑞𝑜, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡)

 𝑄 is the set of states

 Σ is the input alphabet, without ⊔

 Γ is the tape alphabet and ⊔∈ Γ, Σ ⊆ Γ

 𝛿: 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅} is the transition
function

 𝑞0 ∈ 𝑄 is the initial state

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ∈ 𝑄 are the final states

TM Configurations

 Describe the state of the machine

 Written as 𝐶 = 𝑢𝑞𝑖𝑣 where:

 𝑞𝑖 is the current state of the machine

 𝑢𝑣 is the content of the tape

 The head stays at the first symbol of 𝑣

TM Transitions

 A configuration 𝐶1 yields 𝐶2 if the

machine can go from 𝐶1 to 𝐶2 in 1 step

 𝑢𝑎𝑞𝑖𝑏𝑣 yields 𝑢𝑞𝑗𝑎𝑐𝑣 if 𝛿 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝐿

 𝑢𝑎𝑞𝑖𝑏𝑣 yields 𝑢𝑎𝑐𝑞𝑗𝑣 if 𝛿 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝑅

 Note: cannot go over the left border!

TM Acceptance

 The machine starts at 𝑞0𝑤

 The machine accepts at 𝑞𝑎𝑐𝑐𝑒𝑝𝑡

 The machine rejects at 𝑞𝑟𝑒𝑗𝑒𝑐𝑡

 An input is accepted if there is 𝐶1, … , 𝐶𝑘

 The machine starts at 𝐶1

 Each 𝐶𝑖 yields 𝐶𝑖+1

 𝐶𝑘 is an accepting state

Computations and Deciders

 Three possible outcomes:

 It ends in an accept state

 It ends in a reject state

 It does not end (loops forever)

 Accept and reject are halting states

 Loops are not halting

 A Decider halts on every input

TMs and Languages

 The strings a TM 𝑀 accepts define the
language of 𝑀 , L(𝑀)

 A language is Turing recognizable
(recursively enumerable) if some TM
recognizes it

 A language is Turing decidable
(recursive) if some TM decides it

TM Example

TM 𝑀2 recognizes the language
consisting of all strings of zeros with
their length being a power of 2. In other
words, it decides the language

𝐴 = 02
𝑛
 𝑛 ≥ 0}.

TM Example

𝐴 = 02
𝑛
 𝑛 ≥ 0}

1.Sweep left to right accross the tape,
crossing off every other 0

2.If the tape has a single 0, accept

3.If the tape has more than one 0 and
the number of 0s is odd, reject

4.Return the head to the left

5.Go to stage 1

TM Example

q1 q2

q5

q3

q4
qaccept

qreject

0→□,R 0 → x,R

□ →R
x → R

□ → R

□ → R

x → R

x → R

x → R

0 → L
x → L

0 → x,R

0 → R

Another TM Example

𝐹 = 𝑤#𝑤 𝑤 ∈ 0,1 ∗}

1.Check for #, if not reject

2.Zig-zag across and cross off same
symbols. If not same, reject

3.If all left of # are crossed, check for
non crossed symbols on the right side

4.If none, accept, otherwise reject

Another TM Example

Variants of Turing Machines

 Mostly equivalent to the original

 Example: consider movements as
{L,R,S}, where S means stay still

 Equivalent to original, represent S as
two transitions: first R, then L or vice
versa

Multi-Tape Turing Machine

 Include multiple tapes and heads

 Input on first tape, the others blank

 Transitions 𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘

M

0 0 1 1

b a b

a b

Equivalence Result

Theorem 3.13:

Every multitape Turing machine has an
equivalent single-tape Turing machine.

Equivalence Result

Theorem 3.13:

Every multitape Turing machine has an
equivalent single-tape Turing machine.

M

0 0 1 1

b a b

a b

Equivalence Result

Theorem 3.13:

Every multitape Turing machine has an
equivalent single-tape Turing machine.

M

0 0 1 1

b a b

a b

S 0 0 1 1 # b a b a b # #

Proof of Theorem 3.13

 Consider a input 𝑤1𝑤2…𝑤𝑘

 Add dotted symbols for the head

 Put all the input on the single tape
#𝑤1 𝑤2…𝑤𝑘# ⊔ # ⊔ #…#

 Simulate a single move

 Scan from first # to last to get the heads

 Re-run to update the tape

 If head symbols go to the right # write
a blank and shift the tape content

Equivalence Result

Corollary 3.15:

A language is Turing-recognizable if and
only if some multi-tape Turing machine
recognizes it

Proof:

Forward: an ordinary machine is a
special case of a multi-tape

Backward: see Theorem 3.13

Intermezzo: Programming

“Brainfuck”: language simulating a TM

Character Meaning

> increment the data pointer (to point to the next cell to the right). R

< decrement the data pointer (to point to the next cell to the left). L

+ increment (increase by one) the byte at the data pointer.

- decrement (decrease by one) the byte at the data pointer.

.
output a character, the ASCII value of which being the byte at the data
pointer.

, accept one byte of input, storing its value in the byte at the data pointer.

[
if the byte at the data pointer is zero, then instead of moving the
instruction pointer forward to the next command, jump it forward to the
command after the matching] command.

]
if the byte at the data pointer is nonzero, then instead of moving the
instruction pointer forward to the next command, jump it back to the
command after the matching [command*.

(http://en.wikipedia.org/wiki/Brainfuck)

http://en.wikipedia.org/wiki/Program_Counter
http://en.wikipedia.org/wiki/Branch_(computer_science)

Non Deterministic TMs (NTMs)

 Transition function changed into

 𝛿: 𝑄 × Γ → 𝑃 𝑄 × Γ × 𝐿, 𝑅

 𝛿 𝑞, 𝑎 = 𝑞1, 𝑏1, 𝐿 , … , 𝑞𝑘 , 𝑏𝑘 , 𝑅

 Same idea as for NFAs

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

Equivalence of NTMs and TMs

Theorem 3.16:

Every nondeterministic Turing machine
has an equivalent deterministic Turing
machine.

Idea:

 Three tapes: input, simulation, index

 Simulator to perform computation

 Index to trace the path in the tree

Equivalence of NTMs and TMs

Theorem 3.16:

Every nondeterministic Turing machine
has an equivalent deterministic Turing
machine.

Idea:

 Three tapes: input, simulation, index

 Simulator to perform computation

 Index to trace the path in the tree

Proof of Theorem 3.16

1. Copy the input from tape 1 to 2

2. Use tape 2 to simulate N on one
branch of computation

a. Consult tape 3 to get the transition

b. Abort if empty symbol, invalid or reject

c. Accept if accept state

3. Replace the string on 3 with the
lexicographically next one

4. Repeat from 1.

NTMs and Languages

Corollary 3.18:

A language is Turing-recognizable if and
only if some nondeterministic Turing
machine recognizes it.

Corollary 3.19:

A language is decidable if and only if
some nondeterministic Turing machine
decides it.

Enumerators

 Recursively enumerable languages

 Recognized by TMs

 Alternative model: Enumerator

state
control

a a b b

work tape

Enumerators

 Enumerate the strings

 Start with empty tape

 Output tape (printer)

 Print strings instead of accepting them

 Printing in any order

 Strings might be duplicated

Equivalence Result

Theorem 3.21:

A language is Turing-recognizable if and
only if some enumerators enumerate it.

Proof:

Forward: e have an enumerator E.

We can build a machine T that

1. Run E and compare every string

2. If it appears, accept

Equivalence Result

Backward: We have a machine T.

We can build an enumerator E as this:

1. Ignore the input

2. For each i = 1,2,…

1. Run T for i steps on each input in Σ∗

2. If any computation accepts, print it.

E eventually prints all string T accepts

Other Variants of TMs

 Many other variants of TMs exist

 All equivalent in power under
reasonable assumptions

 Turing complete languages

 The class of algorithms described
identical for all these languages.

 For a given task, one type of language
may be more elegant or simple.

Definition of Algorithm

 Precise definition only in 20th century

 Informal idea was already present

 Collection of instructions for a task

 Formal definition needed to be found

Anecdote: David Hilbert

 Famous mathematician

 Int. congress of Maths in 1900

 Formulated 23 math problems

 The 10th problem said:

 Devise an algorithm to test whether a
polynomial has an integral root

 Algorithm = “a process according to
which it can be determined by a finite
number of operations”

Anecdote: David Hilbert

 Mathematicians believed it existed

 We know it is not possible

 A formal definition of algorithm was
needed to prove it

 Alonso Church : 𝜆-calculus

 Alan Turing: Turing machines

 Church—Turing Thesis:

 Intuitive algorithm = TM algorithm

Formal Definition of Algorithm

 Let’s rephrase Hilbert problem

 Consider the set

𝐷 = 𝑝 𝑝 is a polynomial with integer root}

 Hilbert problem asks if D is decidable

 Unfortunately it is not

 Fortunately is Turing recognizable

Formal Definition of Algorithm

 Consider a simpler problem

𝐷1 = 𝑝 𝑝 is a poly. over 𝑥 with integer root}

 Build a TM that recognizes it

1. Input is a polynomial over x

2. Evaluate p with x=0,1,-1,2,-2,…

3. If polynomial evaluates to 0, accept

Formal Definition of Algorithm

 Describe an algorithm equals to
describe a Turing machine

 Three possibilities:

 Formal description (low level)

 Implementation description (mid level)

 English description (high level)

 We will describe machines in high level

Turing Machine Description

 Input is always a string

 Objects represented as strings

 Encoding is irrelevant (equivalence)

 TM Algorithm will be high level

 First line describe the input

 Indentations describe blocks

Example description

𝐴 = {⟨𝐺⟩| 𝐺 is a connected undirected graph}

Remember the definition of connected?

Example description

𝐴 = {⟨𝐺⟩| 𝐺 is a connected undirected graph}

Remember the definition of connected?

Every node is reachable from every one

 4

1

2 3

G =

Example description

M = „On input <G>, the encoding of a graph G:

1. Select the first node of G and mark it.

2. Repeat the following stage until no new nodes are marked.

1. For each node in G, mark it if it is attached by an edge to
a node that is already marked.

3. Scan all the nodes of G to determine whether they all are
marked.
If yes, accept; otherwise reject.“

4

1

2 3

G = <G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4))

Summary

 Turing machines

 Variants of Turing machines

 Multi-tape

 Non-deterministic

 The definition of algorithm

 The Church-Turing Thesis

