Theoretical Computer Science (Bridging Course)

Decidability

Gian Diego Tipaldi

Topics Covered

Investigation on what is solvable

Decidable languages

The halting problem

Decidable Problems

- Acceptance problem:
 - Decide if a string is accepted
- Equivalence problem:
 - Decide if two automata are equivalent
- Emptiness test problem:
 - Decide if the accepted language is empty
- Applied to DFA,NFA,RE,PDA,CFG,TM,...

- Decide is a DFA accept a string w
- Express it as a language A_{DFA}

 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}$

- B is the encoding of a DFA
- Testing acceptance is equivalent to language membership

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w

• Encoding of $B = (Q, \Sigma, \delta, q_o, F)$ and w

q0	q1	q2	q3	#	0	1	#		•••
#	q0	#	q2	q3	#	#	0	1	1
0	1	1	1	0	#	q0			

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w
- Encoding of $B = [Q, \Sigma, \delta, q_o, F)$ and w

q0	q1	q2	q3	#	0	1	#		••••
#	ЧŪ	#	4 2	q3	#	#	0	1	1
0	1	1	1	0	#	q0			

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w
- Encoding of $B = (Q \Sigma, \delta, q_o, F)$ and w

q0	q1	q2	q3	#	0	1	#		
#	q0	#	q2	q3	#	#	ð	1	1
0	1	1	1	0	#	q0			

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w
- Encoding of $B = (Q, \Sigma, \delta, q_o, F)$ and w

q0	q1	q2	q 3	#	0	1	#		
#	q0	#	q2	q3	#	#	0	L L	1
0	1	1	1	0	#	q0			

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w
- Encoding of $B = (Q, \Sigma, \delta, q_o, F)$ and w

q0	q 1	1 2	q3	#	0	1	#		•••
#	q 0	#	q2	q3	#	#	0	1	1
0	–		1	0	#	q0			

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w
- Encoding of $B = (Q, \Sigma, \delta, q_o, F)$ and w

q0	q1	q2	ą)	#	ρ	1	#		•••
#	q0	#	q2	q3	#	#	0	1	1
0	1	1	4	U	#	q0			

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w
- Encoding of $B = (Q, \Sigma, \delta, q_o, F)$ and w

a0	a1	a2	a3	#	0	0 1	#		
- 1 -	~	- - -	~ 2	~ 2				-	
	40		9-	99	F	#	U	L .	L
0	1	1	1	0	#	q0			
-									

- Use a decider to test membership
- Idea: Decider will simulate B and accept/reject if B accepts/rejects w

• Encoding of $B = (Q, \Sigma, \delta, q_o, F)$ and w

q0	q1	q2	q3	#	0	1	#		••••
#	q0	#	q2	q3	#	#	P	1	1
0	1	1	1	0	#	q0			
-	-	-		-		-			

Theorem 4.1:

 A_{DFA} is a decidable language.

Proof: M= "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- **1**.Simulate *B* on input *w*.
- 2.If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."

Theorem 4.2:

 A_{NFA} is a decidable language.

Proof:

- N = "On input $\langle B, w \rangle$, where B is a NFA and w is a string:
 - **1**.Convert the NFA in an equivalent DFA C
 - **2.**Run the previous machine on input $\langle C, w \rangle$
 - **3**.If the simulation ends in an accept state, *accept.* If it ends in a nonaccepting state, *reject.*"

Theorem 4.3:

 A_{RE} is a decidable language.

Proof:

- $P = "On input \langle B, w \rangle$, where B is a RE and w is a string:
 - 1.Convert the RE in an equivalent NFA A
 - **2.**Run the machine N on input $\langle A, w \rangle$
 - **3.**If N accepts, *accept*. If N rejects, *reject*."

Emptiness problem for DFAs

- Decide is a DFA accept the empty language
- Express it as a language E_{DFA} $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA for which } L(A) = \emptyset \}$
- A is the encoding of a DFA

Emptiness problem for DFAs

<u>Theorem 4.4</u>: E_{DFA} is a decidable language.

Proof idea: A DFA accepts some string iff it is possible to reach an accept state using valid transitions. Construct a TM T similar to the one for connected graphs

Emptiness problem for DFAs

Theorem 4.4:

 E_{DFA} is a decidable language.

Proof:

- T = "On input $\langle A \rangle$, where A is a DFA:
 - **1**.Mark the start state of *A*
 - 2.Repeat until no new state is marked
 - Mark a state if it has a transition to it coming from any other marked state
 - **3.**If no accept state is marked, *accept*. Otherwise, *reject*."

Equivalence Problem for DFAs

Theorem 4.5:

 $EQ_{DFA} = \{ \langle A, B \rangle \mid A, B \in DFA, L(A) = L(B) \}$ is a decidable language. Proof idea:

Prove the symmetric difference is empty. $L(C) = \left(\overline{L(B)} \cap L(A)\right) \cup \left(\overline{L(A)} \cap L(B)\right)$

Equivalence Problem for DFAs

Theorem 4.5:

 EQ_{DFA} is a decidable language.

Proof: F = "On input (A, B), where A, B are DFA: 1.Construct the DFA C for the symmetric difference language (closure property) 2.Run TM T from Theorem 4.4 3.If T accepts, accept. If T rejects, reject."

Acceptance Problem for CFGs

Theorem 4.7:

 $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$ is a decidable language. Proof idea:

Rely on the fact that if G is in CNF, then any derivation of w has length at most 2|w| + 1.

Also consider that there are only finitely many derivations of length less than n.

Acceptance Problem for CFGs

Theorem 4.7:

 A_{CFG} is a decidable language.

Proof:

S = "On input $\langle G, w \rangle$, where B is a CFG and w is a string:

1.Convert G to a CNF

2.List all derivations with k=2n-1 steps, n is the length of w. if n=0 consider k=1.

3.If any of them generates w, *accept.* If not, *reject.*"

Emptiness Problem for CFGs

Theorem 4.7:

 $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG for which } L(G) = \emptyset \}$ is a decidable language.

Proof idea:

Determine for each variable whether that variable is capable to generate a string of terminals

Emptiness Problem for CFGs

Theorem 4.7:

 E_{CFG} is a decidable language.

Proof:

- $R = "On input \langle G \rangle$, where G is a CFG:
 - 1.Mark all terminal symbols in G
 - 2.Repeat until no new variable is marked
 - **1.** Mark any variable A if G contains $A \rightarrow U_1 \dots U_k$ and U_1, \dots, U_k have all been marked
 - **3.**If the start symbol is marked, *accept.* If not, *reject*."

Equivalence Problem for CFGs

 $EQ_{CFG} = \{\langle G, H \rangle | G, H \in CFGs, L(G) = L(H)\}$

Is it decidable?

Equivalence Problem for CFGs

 $EQ_{CFG} = \{\langle G, H \rangle | G, H \in CFGs, L(G) = L(H)\}$

 We cannot use the same method as for DFAs, since context free languages are not closed under complementation nor intersection.

Decidability of CFLs

Theorem 4.9:

Every context free language is decidable.

Proof:

- Let G be a CFG for the language
- M_G = "On input w:

1.Run the TM S on input $\langle G, w \rangle$

2.If S accepts, *accept;* If S rejects, *reject.*"

Some problems are unsolvable

Famous example: the halting problem

Philosophical implication: Computers are fundamentally limited

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

<u>Theorem 4.11:</u>

 A_{TM} is undecidable

Observation: A_{TM} is Turing recognizable, thus recognizer are more powerful than deciders.

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

The following machine recognizes it $U = "On input \langle M, w \rangle$, where M is a TM and w is a string

- 1. Simulate M on input w
- 2. If M ever enters the accept state, accept; if M ever enters the reject state, reject."

Diagonalization

- Developed by G. Cantor in 1873
- Concerns the measure of infinite sets
- Used to prove the halting problem
- Do sets A and B have the same size?
- If finite, one can count the elements
- How about infinite sets?

Diagonalization

Consider possible pairings from A to B

- Consider the function $f: A \rightarrow B$
 - f is injective: $f(a) \neq f(b)$, whenever $a \neq b$
 - f is surjective: $\forall b \in B, \exists a \in A: f(a) = b$
 - f is bijective if injective and surjective
- A and B have same size if ∃ f bijective
- A set is countable if size at most of N

Example – Even Numbers

Consider this two sets

 $A = \{ a \mid a \in \mathbb{N} \}, B = \{ b \mid b/2 \in \mathbb{N} \}$

• Consider the function $f: A \rightarrow B$

$$f(n)=2n$$

 f is a bijective function, therefore A and B have the same size and B is countable

Example – Rational Numbers

Consider the set of rational numbers

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{N} \right\}$$

• \mathbb{Q} seems much larger than \mathbb{N}

Example – Rational Numbers

Consider the set of rational numbers

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{N} \right\}$$

• \mathbb{Q} seems much larger than \mathbb{N} , but...

Q is countable

Example – Rational Numbers

Consider the set of real numbers $\mathbb R$

•
$$\pi = 3.1415926 \dots$$

• $\sqrt{2} = 1.4142135 \dots$

Is it countable?

Theorem 4.17:

 \mathbb{R} is uncountable

Proof (by contradiction):

Assume that there is an f from N to R. Find an x in R that $x \neq f(n) \forall n \in N$. x is a number between 0 and 1. The first digit is different than the first decimal of f(1), the second is different than the second decimal of f(2) and so on...

Theorem 4.17:

ℝ is uncountable
 Proof (by contradiction):

- n f(n)
- 1 3.<u>1</u>414...
- 2 5.5<u>6</u>7...
- 3 0.88<u>8</u>888...

Theorem 4.17:

ℝ is uncountable
 Proof (by contradiction):

- n f(n)
- 1 3.<u>1</u>414...
- 2 5.5<u>6</u>7...
- 3 0.88<u>8</u>888...

...

Theorem 4.17:

ℝ is uncountable
 Proof (by contradiction):

- n f(n)
- 1 3.<u>1</u>414...
- 2 5.5<u>6</u>7...
- 3 0.88<u>8</u>888...

So, $x \neq f(n)$ for all n

What About Turing Machines?

- The set of all strings Σ^* is countable
 - Similar to rational numbers
 - Go from small strings to bigger
- We can encode a TM as a string

The set of TM is countable

Uncountable Languages

Lemma:

The set B of infinite binary strings is uncountable

Proof:

Proceed as with the real numbers. Find an infinite string whose first symbol is different than the first symbol on the first string and so on...

Uncountable Languages

<u>Lemma</u>:

The set L of all languages is uncountable Proof:

Define a correspondence between L and B. Take the set of all strings Σ^* . Encode a language A with a binary string χ_A , where 1 means a string belongs to A.

$$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots \};$$

$$A = \{ 0, 00, 01, 000, 001, \dots \};$$

$$\chi_A = 0 1 0 1 1 0 0 1 1 \dots .$$

Turing Recognizable Languages

<u>Theorem 4.18</u>:

Some languages are not Turing recognizable

Proof:

The set of TMs is countable, while the set of all language is not. Therefore, there is no correspondence between the set of languages and the set of TMs.

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

Theorem 4.11:

 A_{TM} is undecidable

Proof (by contradiction): Assume A_{TM} is decidable and H is a decider for that. Build another decider D that contradicts the hypothesis. Hint: Use H to define D.

Proof (by contradiction):

- $D = "On input \langle M \rangle$, where M is a TM:
 - **1.** Run H on $\langle M, \langle M \rangle \rangle$
 - 2. Accept if H rejects and vice versa"

We have

 $D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$

Proof (by contradiction):

- $D = "On input \langle M \rangle$, where M is a TM:
 - **1.** Run H on $\langle M, \langle M \rangle \rangle$
 - 2. Accept if H rejects and vice versa"

We have (on its own encoding)

 $D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$

Proof (by contradiction):

- $D = "On input \langle M \rangle$, where M is a TM:
 - **1.** Run H on $\langle M, \langle M \rangle \rangle$
 - 2. Accept if H rejects and vice versa"

We have (on its own encoding)

	<m1></m1>	<m2></m2>	<m3></m3>	<m4></m4>	•••	<d></d>	•••
M1	accept		accept			accept	
M2 M3	accept	accept	accept	accept		accept	
M4	accept		accept			accept	
• •		• • •			•.		

	<m1></m1>	<m2></m2>	<m3></m3>	<m4></m4>	•••	<d></d>	•••
M1	accept	reject	accept	reject		accept	
M2 M3	accept reject	accept reject	accept reject	accept reject		accept reject	
M4	accept	reject	accept	reject		accept	
•		:			•.		

	<m1></m1>	<m2></m2>	<m3></m3>	<m4></m4>	•••	<d></d>	•••	
M1	<u>accept</u>	reject	accept	reject		accept		
M2	accept	<u>accept</u>	accept	accept		accept		
M3	reject	reject	<u>reject</u>	reject		reject		
M4	accept	reject	accept	<u>reject</u>		accept		
• • •		:			۰.			
D	reject	reject	accept	accept		?		
•							•.	

Non Recognizable Languages

 Are there languages that are not even Turing recognizable?

Non Recognizable Languages

 Are there languages that are not even Turing recognizable?

Yes!

We need something harder than A_{TM}

Co-Turing Recognizable

A language is co-Turing recognizable if it is the complement of a Turing recognizable language

<u>Theorem 4.22</u>:

A language is decidable iff it is Turing recognizable and co-Turing recognizable

Co-Turing Recognizable

<u>Theorem 4.22</u>:

A language is decidable iff it is Turing recognizable and co-Turing recognizable

Proof (forward):

If A is decidable, then the complement of A is decidable. A decidable language is also Turing recognizable.

Co-Turing Recognizable

<u>Theorem 4.22</u>:

A language is decidable iff it is Turing recognizable and co-Turing recognizable

Proof (backward): M1,M2 are the recognizer of A, co-A. M = "On input w:

- 1. Run M1 and M2 in parallel.
- 2. If M1 accepts, accept. If M2 accepts, reject"

Non Recognizable Languages

Corollary: $\overline{A_{TM}}$ is not Turing recognizable

Proof: We know that A_{TM} is Turing recognizable. Assume $\overline{A_{TM}}$ is also Turing recognizable. Then A_{TM} would be decidable. Contradiction: Theorem 4.11 tells us not!

Example Exam Question

Summary

- Decidable problems
 - Acceptance
 - Emptiness test
 - Equivalence
- The halting problem
- Digaonalization