
..

Theoretical Computer
Science (Bridging Course)

.

First Order Logic

..

Gian Diego Tipaldi

..

Motivation

Propositional logic does not allow talking
about structured objects.
.
A famous syllogism..

.

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

It is impossible to formulate this in
propositional logic.
→ first-order logic (predicate logic)

2

..

Elements of logic (recap)

The same questions as before:
Which elements are well-formed? → syntax
What does it mean for a formula to be
true? → semantics
When does one formula follow from
another? → inference

We will now discuss these questions for
first-order logic
(but only touching the topic of inference
briefly).

3

..
Building blocks of propositional
logic

In propositional logic, we can only talk about
formulae (propositions).

An interpretation tells us which formulae are
true (or false).

4

..
Building blocks of first-order
logic
In first-order logic, there are two different
kinds of elements under discussion:

terms identify the object under discussion
“Socrates”
“the square root of 5”

formulae state properties of the objects
under discussion

“All men are mortal.”
“The square root of 5 is greater than 2.”

An interpretation tells us which object is
denoted by a term, and which formulae are
true (or false).

5

..
Syntax of first-order logic: signa-
tures
.
Definition (signature)..

.

A (first-order) signature is a 4-tuple
S = ⟨V , C,F ,R⟩ consisting of the following four
(disjoint) parts:

a set V of variable symbols,
a set C of constant symbols,
a set F of function symbols,
a set R of relation symbols (also called
predicate symbols)

6

..
Syntax of first-order logic: signa-
tures
.
Definition (signature)..

.

Each function symbol f ∈ F and relation
symbol R ∈ R has an associated arity (number
of arguments) arity(f),arity(R) ∈ N1.

Terminology: A k-ary (function or relation)
symbol is a symbol s with arity(s) = k.

Also: unary, binary, ternary

7

..
Syntax of first-order logic: signa-
tures

Conventions:
variable symbols are typeset in italics,
other symbols in an upright typeface
relation symbols begin with upper-case
letters, other symbols with lower-case
letters

8

..

Signatures: examples

.
Example: arithmetic..

.

V = {x, y, z, x1, x2, x3, . . . }
C = {zero,one}
F = {sum,product}
R = {Positive,PerfectSquare}

arity(sum) = arity(product) = 2,
arity(Positive) = arity(PerfectSquare) = 1

9

..

Signatures: examples

.
Example: genealogy..

.

V = {x, y, z, x1, x2, x3, . . . }
C = {queen-elizabeth,donald-duck}
F = ∅
R = {Female,Male,Parent}

arity(Female) = arity(Male) = 1,
arity(Parent) = 2

9

..

Syntax of first-order logic: terms

.
Definition (term)..

.

Let S = ⟨V , C,F ,R⟩ be a signature.
A term (over S) is inductively constructed
according to the following rules:

Each variable symbol v ∈ V is a term.
Each constant symbol c ∈ C is a term.
If t1, . . . , tk are terms and f ∈ F is a function
symbol with arity k, then f(t1, . . . , tk) is a
term.

10

..

Syntax of first-order logic: terms

Examples:
x4
donald-duck
sum(x3,product(one, x5))

11

..
Syntax of first-order logic: for-
mulae
.
Definition (formula)..

.

Let S = ⟨V , C,F ,R⟩ be a signature.
A formula (over S) is inductively constructed
as follows:

R(t1, . . . , tk) (atomic formula; atom)
where R ∈ R is a k-ary relation symbol
and t1, . . . , tk are terms (over S)
t1 = t2 (atomic formula; equality)
where t1 and t2 are terms (over S)

12

..
Syntax of first-order logic: for-
mulae
.
Definition (formula)..

.

Let S = ⟨V , C,F ,R⟩ be a signature.
A formula (over S) is inductively constructed
as follows:

⊤ (truth)
⊥ (falseness)
∀xφ (universal quantification)
∃xφ (existential quantification)
where x ∈ V is a variable symbol and φ is a
formula over S

12

..
Syntax of first-order logic: for-
mulae
.
Definition (formula)..

.

Let S = ⟨V , C,F ,R⟩ be a signature.
A formula (over S) is inductively constructed
as follows:

¬φ (negation)
(φ ∧ ψ) (conjunction)
(φ ∨ ψ) (disjunction)
(φ→ ψ) (material conditional)
(φ↔ ψ) (biconditional)
where φ and ψ are formulae over S

12

..

Syntax: examples

.
Example: arithmetic and genealogy..

.

Positive(x2)
∀xPerfectSquare(x) → Positive(x)
∃x3 PerfectSquare(x3) ∧ ¬Positive(x3)
∀x (x = y)

∀x (sum(x, x) = product(x,one))
∀x∃y (sum(x, y) = zero)
∀x∃y Parent(y, x) ∧ Female(y)

Conventions: When we omit parentheses, ∀
and ∃ bind less tightly than anything else.

13

..

Terminology and notation

.
Definition (Ground term)..
.Term that contains no variable symbol

Examples: zero, sum(one,one), donald-duck
Counterexamples: x4, product(x, zero)

Similarly: ground atom, ground formula …
Examples: PerfectSquare(zero) ∨ one = zero
Counterexample: ∃xone = x

14

..

Abreviations

Sequences of quantifiers of the same kind can
be collapsed

∀x∀y∀z φ → ∀xyz φ
∀x3∀x1∃x2∃x5 φ → ∀x3x1∃x2x5 φ

Sometimes commas and/or colons are used:
∀x, y, z:φ
∀x3, x1∃x2, x5 φ

15

..

Semantics of first-order logic

In propositional logic, an interpretation was
given by assigning values to the atomic
propositions.
In first-order logic, we need to interpret the
meaning of constant, function and relation
symbols.
Variable symbols also need to be given
meaning.
However, this is not done through the
interpretation itself, but through a separate
variable assignment.

16

..

Semantics of first-order logic

.
Definition (interpretation)..

.

An interpretation (for S) is a pair I = ⟨D, ·I⟩
consisting of

a nonempty set D called the domain (or
universe) and
a function ·I that assigns a meaning to
constant, function and relation symbols:

cI ∈ D for constant symbols c ∈ C
fI : Dk → D for k-ary function symbols f ∈ F
RI ⊆ Dk for k-ary relation symbols R ∈ R

17

..

Semantics of first-order logic

.
Definition (variable assignment)..

.
A variable assignment (for S and domain D) is
a function α : V → D.

Idea: extend I and α to general terms, then
to atoms, then to arbitrary formulae

18

..

Semantics of first-order logic

Example: (∀xBlock(x) → Red(x)) ∧ Block(a)
Terms are interpreted as objects.
Unary predicates denote properties of
objects (being a block, being red, …)
General predicates denote relations
between objects (being the child of
someone, having a common multiple, …)
Universally quantified formulae (“∀”) are
true if they hold for all objects.
Existentially quantified formulae (“∃”) are
true if they hold for at least one object.

19

..

Interpretation in first-order logic

.
Definition (interpretation of a term)..

.

Let I = ⟨D, ·I⟩ be an interpretation for S,
and let α be a variable assignment for S and
domain D.
Let t be a term over S.
The interpretation of t under I and α, in
symbols tI,α is an element of the domain D
defined as follows:

If t = x with x ∈ V (t is a variable term):
xI,α = α(x)

20

..

Interpretation in first-order logic

.
Definition (interpretation of a term)..

.

Let I = ⟨D, ·I⟩ be an interpretation for S,
and let α be a variable assignment for S and
domain D.
Let t be a term over S.
The interpretation of t under I and α, in
symbols tI,α is an element of the domain D
defined as follows:

If t = c with c ∈ C (t is a constant term):
cI,α = cI

20

..

Interpretation in first-order logic

.
Definition (interpretation of a term)..

.

Let I = ⟨D, ·I⟩ be an interpretation for S,
and let α be a variable assignment for S and
domain D.
Let t be a term over S.
The interpretation of t under I and α, in
symbols tI,α is an element of the domain D
defined as follows:

If t = f(t1, . . . , tk) (t is a function term):
(f(t1, . . . , tk))I,α = fI(tI,α1 , . . . , tI,αk)

20

..

Interpreting terms: example

Signature: S = ⟨V , C,F ,R⟩ with V = {x, y, z},
C = {zero,one} F = {sum,product},
arity(sum) = arity(product) = 2

I = ⟨D, ·I⟩ with
D = {d0, d1, d2, d3, d4, d5, d6}
zeroI = d0
oneI = d1
sumI(di, dj) = d(i+j) mod 7, ∀i, j ∈ {0, . . . , 6}
productI(di, dj) = d(i·j) mod 7 ∀i, j ∈ {0, . . . , 6}

α = {x 7→ d5, y 7→ d5, z 7→ d0}

21

..

Interpreting terms: example

Signature: S = ⟨V , C,F ,R⟩ with V = {x, y, z},
C = {zero,one} F = {sum,product},
arity(sum) = arity(product) = 2

I = ⟨D, ·I⟩ with
D = {d0, d1, d2, d3, d4, d5, d6}
zeroI = d0
oneI = d1
sumI(di, dj) = d(i+j) mod 7, ∀i, j ∈ {0, . . . , 6}
productI(di, dj) = d(i·j) mod 7 ∀i, j ∈ {0, . . . , 6}

α = {x 7→ d5, y 7→ d5, z 7→ d0}
21

..

Interpreting terms: example

.
Example (ctd.)..

.

zeroI,α =

yI,α =

sum(x, y)I,α =

product(one, sum(x, zero))I,α =

22

..

Satisfaction in first-order logic

.
Definition (satisfaction of a formula)..

.

Let I = ⟨D, ·I⟩ be an interpretation for S,
and let α be a variable assignment for S and
domain D. We say that I and α satisfy a
first-order logic formula φ (also: φ is true
under I and α), in symbols: I, α |= φ,
according to the following inductive rules:

I, α |= R(t1, . . . , tk) iff ⟨tI,α1 , . . . , tI,αk ⟩ ∈ RI

I, α |= t1 = t2 iff tI,α1 = tI,α2

23

..

Satisfaction in first-order logic

.
Definition (satisfaction of a formula)..

.

I, α |= ∀xφ iff I, α[x := d] |= φ for all d ∈ D

I, α |= ∃xφ iff I, α[x := d] |= φ for at least
one d ∈ D

where α[x := d] is the variable assignment
which is the same as α except for x, where it
assigns d. Formally:

(α[x := d])(z) =

{
d if z = x

α(z) if z ̸= x

23

..

Satisfaction in first-order logic

.
Definition (satisfaction of a formula)..

.

I, α |= ⊤ always (i. e., for all I, α)
I, α |= ⊥ never (i. e., for no I, α)

I, α |= ¬φ iff I, α ̸|= φ

I, α |= φ ∧ ψ iff I, α |= φ and I, α |= ψ

I, α |= φ ∨ ψ iff I, α |= φ or I, α |= ψ

I, α |= φ→ ψ iff I, α ̸|= φ or I, α |= ψ

I, α |= φ↔ ψ iff (I, α |= φ and I, α |= ψ) or
(I, α ̸|= φ and I, α ̸|= ψ)

23

..

Semantics of first-order logic

Signature: S = ⟨V , C,F ,R⟩ with V = {x, y, z},
C = {a,b}, F = ∅, R = {Block,Red},
arity(Block) = arity(Red) = 1.

I = ⟨D, ·I⟩ with
D = {d1, d2, d3, d4, d5}
aI = d1
bI = d3
BlockI = {d1, d2}
RedI = {d1, d2, d3, d5}

α = {x 7→ d1, y 7→ d2, z 7→ d1}

24

..

Semantics of first-order logic

Signature: S = ⟨V , C,F ,R⟩ with V = {x, y, z},
C = {a,b}, F = ∅, R = {Block,Red},
arity(Block) = arity(Red) = 1.

I = ⟨D, ·I⟩ with
D = {d1, d2, d3, d4, d5}
aI = d1
bI = d3
BlockI = {d1, d2}
RedI = {d1, d2, d3, d5}

α = {x 7→ d1, y 7→ d2, z 7→ d1}
24

..

Semantics of first-order logic

Questions:
I, α |= Block(b) ∨ ¬Block(b)?
I, α |= Block(x) → (Block(x) ∨ ¬Block(y))?
I, α |= Block(a) ∧ Block(b)?
I, α |= ∀x(Block(x) → Red(x))?

25

..

Semantics of first-order logic

Questions:
I, α |= Block(b) ∨ ¬Block(b)?

25

..

Semantics of first-order logic

Questions:
I, α |= Block(x) → (Block(x) ∨ ¬Block(y))?

25

..

Semantics of first-order logic

Questions:
I, α |= Block(a) ∧ Block(b)?

25

..

Semantics of first-order logic

Questions:
I, α |= ∀x(Block(x) → Red(x))?

25

..

Satisfaction of sets of formulae

.
Definition (satisfaction of a set of
formulae)..

.

Consider a signature S, a set of formulae Φ
over S, an interpretation I = ⟨D, ·I⟩ for S, and
a variable assignment α for S and domain D.

We say that I and α satisfy Φ (also: Φ is true
under I and α), in symbols: I, α |= Φ, if
I, α |= φ for all φ ∈ Φ.

26

..

Free and bound variables

Question:
Consider a signature with variable symbols
{x1, x2, x3, . . . }, and any interpretation I.
Which parts of the definition of α matter for
I, α |= (∀x4(R(x4, x2)∨ f(x3) = x4))∨∃x3S(x3, x2)?

27

..

Free and bound variables

Question:
Consider a signature with variable symbols
{x1, x2, x3, . . . }, and any interpretation I.
Which parts of the definition of α matter for
I, α |= (∀x4(R(x4, x2)∨ f(x3) = x4))∨∃x3S(x3, x2)?

α(x1), α(x5), α(x6), α(x7), … do not matter
because these variable symbols do not
occur in the formula

27

..

Free and bound variables

Question:
Consider a signature with variable symbols
{x1, x2, x3, . . . }, and any interpretation I.
Which parts of the definition of α matter for
I, α |= (∀x4(R(x4, x2)∨ f(x3) = x4))∨∃x3S(x3, x2)?

α(x4) does not matter either: it occurs in
the formula, but all its occurrences are
bound by a surrounding quantifier

27

..

Free and bound variables

Question:
Consider a signature with variable symbols
{x1, x2, x3, . . . }, and any interpretation I.
Which parts of the definition of α matter for
I, α |= (∀x4(R(x4, x2)∨ f(x3) = x4))∨∃x3S(x3, x2)?

→ only the assignments to the free
variables x2 and x3 matter

27

..

Variables of a term

.
Definition (variables of a term)..

.

Let t be a term. The set of variables occurring
in t, written vars(t), is defined as follows:

vars(x) = {x} for variable symbols x
vars(c) = ∅ for constant symbols c
vars(f(t1, . . . , tk)) = vars(t1) ∪ · · · ∪ vars(tk)
for function terms

Example: vars(product(x, sum(c, y))) =

28

..
Free and bound variables of a
formula
.
Definition (free variables)..

.

Let φ be a logical formula. The set of free
variables of φ, written free(α), is defined as:

free(R(t1, . . . , tk)) = vars(t1) ∪ · · · ∪ vars(tk)
free(t1 = t2) = vars(t1) ∪ vars(t2)
free(⊤) = free(⊥) = ∅
free(¬φ) = free(φ)
free(φ ∧ ψ) = free(φ ∨ ψ) = free(φ→ ψ)
= free(φ↔ ψ) = free(φ) ∪ free(ψ)
free(∀xφ) = free(∃xφ) = free(φ) \ {x}

29

..
Free and bound variables of a
formula
Example:
free((∀x4(R(x4, x2) ∨ f(x3) = x4)) ∨ ∃x3S(x3, x2))
= ?

29

..

Closed formulae/sentences

Remark: Let φ be a formula, and let α and β
be variable assignments such that α(x) = β(x)
for all free variables of φ.
Then I, α |= φ iff I, β |= φ.

In particular, if free(φ) = ∅, then α does not
matter at all.

30

..

Closed formulae/sentences

Remark: Let φ be a formula, and let α and β
be variable assignments such that α(x) = β(x)
for all free variables of φ.
Then I, α |= φ iff I, β |= φ.

In particular, if free(φ) = ∅, then α does not
matter at all.

30

..

Closed formulae/sentences

.
Definition (closed formulae/sentences)..

.

A formula φ with no free variables (i. e.,
free(φ) = ∅) is called a closed formula or
sentence.

If φ is a sentence, we often use the notation
I |= φ instead of I, α |= φ because the
definition of α does not affect whether or not
φ is true under I and α.

Formulae with at least one free variable are
called open.

31

..

Closed formulae: examples

Question: Which of the following formulae are
sentences?

Block(b) ∨ ¬Block(b)
Block(x) → (Block(x) ∨ ¬Block(y))
Block(a) ∧ Block(b)
∀x(Block(x) → Red(x))

32

..

Omitting signatures and domains

For convenience, from now on we implicitly
assume that we use matching signatures and
that variable assignments are defined for the
correct domain.

Example:

Consider a signature S, a set of formulae
Φ over S, an interpretation I for S, and a
variable assignment α for S and the
domain of I.

33

..

Omitting signatures and domains

For convenience, from now on we implicitly
assume that we use matching signatures and
that variable assignments are defined for the
correct domain.

Example:

Consider a set of formulae Φ, an
interpretation I and a variable
assignment α.

33

..

More logic terminology

The terminology we introduced for
propositional logic can be reused for
first-order logic:

interpretation I and variable assignment α
form a model of formula φ if I, α |= φ.
formula φ is satisfiable if I, α |= φ for at
least one I, α (i. e., if it has a model)
formula φ is falsifiable if I, α ̸|= φ for at least
one I, α
formula φ is valid if I, α |= φ for all I, α

34

..

More logic terminology

The terminology we introduced for
propositional logic can be reused for
first-order logic:

formula φ is unsatisfiable if I, α ̸|= φ for all
I, α
formula φ entails (also: implies) formula ψ,
written φ |= ψ, if all models of φ are models
of ψ
formulae φ and ψ are logically equivalent,
written φ ≡ ψ, if they have the same models
(equivalently: if φ |= ψ and ψ |= φ)

34

..
Terminology for formula sets and
sentences
All concepts from the previous slide also apply
to sets of formulae instead of single formulae.
Examples:

formula set Φ is satisfiable if I, α |= Φ for at
least one I, α
formula set Φ entails formula ψ, written
Φ |= ψ,
if all models of Φ are models of ψ
formula set Φ entails formula set Ψ, written
Φ |= Ψ,
if all models of Φ are models of Ψ

35

..
Terminology for formula sets and
sentences
All concepts apply to sentences (or sets of
sentences) as a special case. In this case, we
usually omit α.

Examples:
interpretation I is a model of a sentence φ
if I |= φ

sentence φ is unsatisfiable if I ̸|= φ for all I

35

..

Going further

Using these definitions, we can discuss the
same topics of propositional logic, such as:

important logical equivalences
normal forms
entailment theorems (deduction theorem
etc.)
proof calculi
(first-order) resolution

We will mention a few basic results on these
topics, but we do not cover them in detail.

36

..

Logical equivalences

All propositional logic equivalences also apply
to first-order logic (e. g., φ ∨ ψ ≡ ψ ∨ φ).
Additionally, here are some equivalences and
entailments involving quantifiers:

(∀xφ) ∧ (∀xψ) ≡ ∀x(φ ∧ ψ)
(∀xφ) ∨ (∀xψ) |= ∀x(φ ∨ ψ) but not vice versa

(∀xφ) ∧ ψ ≡ ∀x(φ ∧ ψ) if x /∈ free(ψ)
(∀xφ) ∨ ψ ≡ ∀x(φ ∨ ψ) if x /∈ free(ψ)

¬∀xφ ≡ ∃x¬φ

37

..

Logical equivalences

All propositional logic equivalences also apply
to first-order logic (e. g., φ ∨ ψ ≡ ψ ∨ φ).
Additionally, here are some equivalences and
entailments involving quantifiers:

∃x(φ ∨ ψ) ≡ (∃xφ) ∨ (∃xψ)
∃x(φ ∧ ψ) |= (∃xφ) ∧ (∃xψ) but not vice versa
(∃xφ) ∨ ψ ≡ ∃x(φ ∨ ψ) if x /∈ free(ψ)
(∃xφ) ∧ ψ ≡ ∃x(φ ∧ ψ) if x /∈ free(ψ)

¬∃xφ ≡ ∀x¬φ

37

..

Normal forms

Similar to DNF and CNF for propositional logic,
there are some important normal forms for
first-order logic, such as:

negation normal form (NNF):
negation symbols may only occur in front of
atoms
prenex normal form:
quantifiers must be the outermost parts of
the formula
Skolem normal form:
prenex normal form with no existential
quantifiers

38

..

Normal forms

Polynomial-time procedures transform
formula φ

into an equivalent formula in negation
normal form,
into an equivalent formula in prenex
normal form, or
into an equisatisfiable formula in Skolem
normal form.

38

..
Entailment, proof systems, reso-
lution…

The deduction theorem, contraposition
theorem and contradiction theorem also
hold for first-order logic.
Sound and complete proof systems (calculi)
exist for first-order logic
Resolution can be generalized to first-order
logic by using the concept of unification.
This first-order resolution is refutation
complete, and hence gives a general
reasoning algorithm for first-order logic.
However, the algorithm does not terminate
on all inputs.

39

..

Summary

First-order logic is a richer logic than
propositional logic and allows us to reason
about objects and their properties.
Objects are denoted by terms built from
variables, constants and function symbols.
Properties are denoted by formulae built
from predicates, quantification, and the
usual logical operators such as negation,
disjunction and conjunction.
We only scratched the surface. Further
topics are discussed in other courses from
the AI group.

40

	Introduction
	Syntax
	Semantics
	Further topics
	Wrap-up

