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Exercise 4.1 (Substitutions and Unification)

(a) Compute the substitutions
(i) P (x, y){ x

A
, y
f(B)},

(ii) P (x, y){ x
f(y)}{

y
g(B,B)},

(iii) P (x, y){ x
f(y) ,

y
g(B,B)} and

(iv) P (x, y){ z
f(B) ,

x
A
}

(b) Apply the unification algorithm to the following set of literals:
{R(h(x), f(h(u), y)), R(y, f(y, h(g(A))))}. In each step, give the values of
Tk, sk, Dk, vk, and tk.

Exercise 4.2 (Wumpus world and resolution)

Consider the following situation in the wumpus world:

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

The gray squares have already been visited, the others not. The percepts in the
corresponding squares are indicated by breeze and stench .

(a) Formalize the general connections between breezes and pits using proposi-
tional formulae. Use 16 variables Pi,j (meaning there is a pit in square [i, j])
and 16 variables Bi,j (breeze in square [i, j]).

(b) Show, using resolution, that square [3, 1] contains a pit in the given sit-
uation, i.e., show that KB |= P3,1. The knowledge base KB consists of
the propositions from part (a) as well as the percepts of the agent. Note:
squares that already have been visited do not contain pits. If necessary,
convert the knowledge base into CNF (conjunctive normal form).



Exercise 4.3 (Planning in the wumpus world)

Consider the following initial state in the wumpus world:

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

The agent in square [1, 1] did not attend the “Action Planning” lecture, thus,
he isn’t able to solve planning tasks with partial observability. Additionally he
is more excited about hunting the wumpus than about finding gold. Therefore,
we define the planning problem as1:
Initial state I:

{connected([1, 1], [2, 1]), connected([2, 1], [3, 1]), . . . ,

connected([4, 3], [4, 4]), at(agent, [1, 1]), at(wumpus, [1, 3]),

at(pit, [3, 1]), at(pit, [4, 4]), arrowleft, agent alive}

Operators O:

Move(x, y)

PRE :at(agent, x) ∧ connected(x, y) ∧ agent alive

EFF :at(wumpus, y) ⊲ ¬agent alive,

at(pit, y) ⊲ ¬agent alive,

at(agent, y),

¬at(agent, x)

Shoot(x, y)

PRE :at(agent, x) ∧ connected(x, y) ∧ arrowleft∧ agent alive

EFF :at(wumpus, y) ⊲ scream,

¬arrowleft

Goal G:

scream∧ agent alive

1stench,breeze and gold will not be formalized here and serve only for the purpose of
illustration (or confusion?).



(a) Suppose, you want to solve a simplified, monotonic planning problem by
ignoring negative effects (aka. the “delete relaxation”) in order to calculate
a heuristic.
Specify the operators of the relaxed planning task.

(b) Sketch the first two levels of the relaxed planning graph. Facts that
do not change in the relaxed problem, e.g. agent alive, at(pit, x) and
connected(x, y) can be omitted (In the initial state in layer F0 you only
have to sketch the fact at(agent, [1, 1])).
To further simplify the problem, you may compile away the conditional
effect at(wumpus, y) ⊲ scream of Shoot(x, y) by moving the effect precon-
dition to the operator precondition2.

(c) Contrary to the PlanGraph method presented in the lecture, actions can-
not be conflicting in a relaxed planning problem since they neither contain
negative preconditions nor negative effects. Therefore, relaxed plans can
be found more easily and thus be used to derive heuristic estimates.
Specify the relaxed plan. Is this plan also applicable in the original prob-
lem?

Exercise 4.4 (Allen’s Interval Calculus)

(a) In general, the composition of two binary relations R and S (over X) is
defined as

R ◦ S = {(x, z) | ∃y ∈ X such that (x, y) ∈ R and (y, z) ∈ S}.

Allen’s interval calculus is closed under composition which means that
every composition of Allen relations (also for unions of the 13 base rela-
tions) can be represented as union of base relations. For example, f ◦s = d

because for arbitrary intervals A,B and C with AfB and BsC it must
hold that AdC. Note that in general the composition of two base rela-
tions needs not to result in a single base relation, as you can see from the
example f−1 ◦ d = (o, d, s). Determine the following compositions:

(1) o ◦m

(2) m ◦ f

(3) (o,m) ◦ f

(b) The composition is also used for the constraint propagation technique.
Use this technique to make the following constraint network 3-consistent.

Hint: If there is no directed edge from one interval to another one,
this implicitly implies that the all-relation (the union of all 13 base re-
lations) holds for these intervals. You may use in your solution that
(IRJ, ISJ)−1 = (IR−1J, IS−1J) (for intervals I, J and R,S base rela-
tions of Allen’s interval calculus).

2When compiling away conditional effects, usually two operators (one with the effect con-
dition and one with the negated effect condition) are created. However, Shoot′(x, y) = 〈PRE :
at(agent, x),¬at(wumpus, y), . . .EFF : ∅〉 does not have any effect and might be excluded here
as a result.
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C D

(<,=, >)

(o, d−1, f−1)
m

(<, s−1)

(o, s, d)

Exercise 4.5 (Bayesian Rule)

Assume, you are at night in Athens and witness a car accident in which a taxi
is involved. 90% of the taxis in Athens are green, all others are blue. You are
absolutely sure that the taxi involved in the accident was blue. But tests show
that distinguishing between blue and green at darkness is only 75% reliable. If
you take this into consideration, what is the probability that the taxi was really
blue? (Hint: Distinguish exactly between the statement that a taxi is red and
the statement that a taxi appears to be red.)

The exercise sheets may and should be worked on in groups of three (3) students.
Please write all your names and the number of your exercise group on your
solution.


