
Foundations of Artificial Intelligence
3. Solving Problems by Searching

Problem-Solving Agents, Formulating Problems, Search Strategies

Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

April 24, 2015

Contents

1 Problem-Solving Agents

2 Formulating Problems

3 Problem Types

4 Example Problems

5 Search Strategies

(University of Freiburg) Foundations of AI April 24, 2015 2 / 47

Problem-Solving Agents

→ Goal-based agents

Formulation: problem as a state-space and goal as a particular condition
on states

Given: initial state

Goal: To reach the specified goal (a state) through the execution
of appropriate actions

→ Search for a suitable action sequence and execute the actions

(University of Freiburg) Foundations of AI April 24, 2015 3 / 47

A Simple Problem-Solving Agent

3 SOLVING PROBLEMS BY
SEARCHING

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seq , an action sequence, initially empty

state , some description of the current world state
goal , a goal, initially null
problem , a problem formulation

state←UPDATE-STATE(state ,percept)
if seq is emptythen

goal← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state ,goal)
seq← SEARCH(problem)
if seq = failure then return a null action

action← FIRST(seq)
seq←REST(seq)
return action

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem, searches for a
sequence of actions that would solve the problem, and then executes the actions one at a time. When
this is complete, it formulates another goal and starts over.

4

(University of Freiburg) Foundations of AI April 24, 2015 4 / 47

Properties of this Agent

Stationary environment

Observable environment

Discrete states

Deterministic environment

(University of Freiburg) Foundations of AI April 24, 2015 5 / 47

Problem Formulation

Goal formulation
World states with certain properties

Definition of the state space
(important: only the relevant aspects → abstraction)

Definition of the actions that can change the world state

Definition of the problem type, which depends on the knowledge of the
world states and actions
→ states in the search space

Specification of the search costs (search costs, offline costs) and the
execution costs (path costs, online costs)

Note: The type of problem formulation can have a serious influence on
the difficulty of finding a solution.

(University of Freiburg) Foundations of AI April 24, 2015 6 / 47

Example Problem Formulation

Given an n× n board from which two diagonally opposite corners have
been removed (here 8× 8):

Goal: Cover the board completely with dominoes, each of which covers
two neighboring squares.

→ Goal, state space, actions, search, . . .

(University of Freiburg) Foundations of AI April 24, 2015 7 / 47

Alternative Problem Formulation

Question:

Can a chess board consisting of n2/2 black and n2/2− 2 white squares be
completely covered with dominoes such that each domino covers one black
and one white square?

. . . clearly not.

(University of Freiburg) Foundations of AI April 24, 2015 8 / 47

Problem Formulation for the Vacuum Cleaner World

World state space:
2 positions, dirt or no dirt
→ 8 world states

Actions:
Left (L), Right (R), or Suck (S)

Goal:
no dirt in the rooms

Path costs:
one unit per action

1 2

87

5 6

3 4

(University of Freiburg) Foundations of AI April 24, 2015 9 / 47

Problem Types: Knowledge of States and Actions

State is completely observable
Complete world state knowledge
Complete action knowledge
→ The agent always knows its world state

State is partially observable
Incomplete world state knowledge
Incomplete action knowledge
→ The agent only knows which group of world states it is in

Contingency problem
It is impossible to define a complete sequence of actions that constitute
a solution in advance because information about the intermediary states
is unknown.

Exploration problem
State space and effects of actions unknown. Difficult!

(University of Freiburg) Foundations of AI April 24, 2015 10 / 47

The Vacuum Cleaner Problem

If the environment is completely observable, the vacuum cleaner always
knows where it is and where the dirt is. The solution then is reduced to
searching for a path from the initial state to the goal state.

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

States for the search: The world states 1-8.

(University of Freiburg) Foundations of AI April 24, 2015 11 / 47

The Vacuum Cleaner World as a Partially Observable State
Problem

If the vacuum cleaner has
no sensors, it doesn’t
know where it or the dirt
is.

In spite of this, it can still
solve the problem. Here,
states are knowledge
states.

States for the search: The
power set of the world
states 1-8.

L

R

S

L

R

S

L R

S

LR

S
L

R

S

L R

SL

R

S

(University of Freiburg) Foundations of AI April 24, 2015 12 / 47

L

R

S

L

R

S

L R

S

LR

S
L

R

S

L R

SL

R

S

Concepts (1)

Initial State: The state from which the agent infers that it is at the
beginning

State Space: Set of all possible states

Actions: Description of possible actions. Available actions might
be a function of the state.

Transition Model: Description of the outcome of an action
(successor function)

Goal Test: Tests whether the state description matches a goal state

(University of Freiburg) Foundations of AI April 24, 2015 14 / 47

Concepts (2)

Path: A sequence of actions leading from one state to another

Path Costs: Cost function g over paths. Usually the sum of the costs of
the actions along the path

Solution: Path from an initial to a goal state

Search Costs: Time and storage requirements to find a solution

Total Costs: Search costs + path costs

(University of Freiburg) Foundations of AI April 24, 2015 15 / 47

Example: The 8-Puzzle

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

States: Description of the location of each of the eight tiles and (for
efficiency) the blank square.

Initial State: Initial configuration of the puzzle.

Actions (transition model defined accordingly): Moving the blank left,
right, up, or down.

Goal Test: Does the state match the configuration on the right (or any
other configuration)?

Path Costs: Each step costs 1 unit (path costs corresponds to its
length).

(University of Freiburg) Foundations of AI April 24, 2015 16 / 47

Example: 8-Queens Problem

Almost a solution:

States:
Any arrangement of 0 to 8 queens on the board.

Initial state:
No queen on the board.

Successor function:
Add a queen to an empty field on the board.

Goal test:
8 queens on the board such that no queen attacks another.

Path costs:
0 (we are only interested in the solution).

(University of Freiburg) Foundations of AI April 24, 2015 17 / 47

Example: 8-Queens Problem

A solution:

States:
Any arrangement of 0 to 8 queens on the board.

Initial state:
No queen on the board.

Successor function:
Add a queen to an empty field on the board.

Goal test:
8 queens on the board such that no queen attacks another.

Path costs:
0 (we are only interested in the solution).

(University of Freiburg) Foundations of AI April 24, 2015 18 / 47

Alternative Formulations

Näıve formulation

States: any arrangement of 0–8 queens
Problem: 64× 63× · · · × 57 ≈ 1014 possible states

Better formulation

States: any arrangement of n queens (0 ≤ n ≤ 8) one per column in
the leftmost n columns such that no queen attacks another.
Successor function: add a queen to any square in the leftmost empty
column such that it is not attacked by any other queen.
Problem: 2, 057 states
Sometimes no admissible states can be found.

(University of Freiburg) Foundations of AI April 24, 2015 19 / 47

Example: Missionaries and Cannibals

Informal problem description:

Three missionaries and three cannibals are on one side of a river that
they wish to cross.

A boat is available that can hold at most two people.

You must never leave a group of missionaries outnumbered by cannibals
on the same bank.

→ Find an action sequence that brings everyone safely to the opposite
bank.

(University of Freiburg) Foundations of AI April 24, 2015 20 / 47

Formalization of the M&C Problem

States: triple (x, y, z) with 0 ≤ x, y, z ≤ 3, where x, y and z
represent the number of missionaries, cannibals and
boats currently on the original bank.

Initial State: (3, 3, 1)

Successor function: from each state, either bring one missionary, one
cannibal, two missionaries, two cannibals, or one of
each type to the other bank.

Note: not all states are attainable (e.g., (0, 0, 1)) and some
are illegal.

Goal State: (0, 0, 0)

Path Costs: 1 unit per crossing

(University of Freiburg) Foundations of AI April 24, 2015 21 / 47

Examples of Real-World Problems

Route Planning, Shortest Path Problem
Simple in principle (polynomial problem). Complications arise when path
costs are unknown or vary dynamically (e.g., route planning in Canada)

Travelling Salesperson Problem (TSP)
A common prototype for NP-complete problems

VLSI Layout
Another NP-complete problem

Robot Navigation (with high degrees of freedom)
Difficulty increases quickly with the number of degrees of freedom.
Further possible complications: errors of perception, unknown
environments

Assembly Sequencing
Planning of the assembly of complex objects (by robots)

(University of Freiburg) Foundations of AI April 24, 2015 22 / 47

General Search

From the initial state, produce all successive states step by step → search
tree.

03/23

General Search

From the initial state, produce all successive states step
by step search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

(University of Freiburg) Foundations of AI April 24, 2015 23 / 47

Some notations

node expansion
generating all successor nodes considering the available actions

frontier
set of all nodes available for expansion

search strategy
defines which node is expanded next

tree-based search
it might happen, that within a search tree a state is entered repeatedly,
leading even to infinite loops. To avoid this,

graph-based search keeps a set of already visited states, the so-called
explored set.

(University of Freiburg) Foundations of AI April 24, 2015 24 / 47

Implementing the Search Tree

Data structure for each node n in the search tree:

n.State: the state in the state space to which the node corresponds

n.Parent: the node in the search tree that generated this node

n.Action: the action that was applied to the parent to generate the node

n.Path-Cost: the cost, traditionally denoted by g(n), of the path from the initial state
to the node, as indicated by the parent pointers

Operations on a queue:

Empty?(queue): returns true only if there are no more elements in the
queue

Pop(queue): removes the first element of the queue and returns it

Insert(element, queue): inserts an element (various possibilities) and returns
the resulting queue

(University of Freiburg) Foundations of AI April 24, 2015 25 / 47

Nodes in the Search Tree

1

23

45

6

7

81

23

45

6

7

8

Node
DEPTH = 6

STATE

PARENT-NODE

ACTION = right

PATH-COST = 6

(University of Freiburg) Foundations of AI April 24, 2015 26 / 47

General Tree-Search Procedure
5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

(University of Freiburg) Foundations of AI April 24, 2015 27 / 47

General Graph-Search Procedure

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

(University of Freiburg) Foundations of AI April 24, 2015 28 / 47

Criteria for Search Strategies

Completeness: Is the strategy guaranteed to find a solution when
there is one?

Time Complexity: How long does it take to find a solution?

Space Complexity: How much memory does the search require?

Optimality: Does the strategy find the best solution (with the
lowest path cost)?

problem describing quantities
b: branching factor
d: depth of shallowest goal node
m: maximum length of any path in the state space

(University of Freiburg) Foundations of AI April 24, 2015 29 / 47

Search Strategies

Uninformed or blind searches

No information on the length or cost of a path to the solution.

breadth-first search, uniform cost search, depth-first search,

depth-limited search, iterative deepening search and

bi-directional search.

In contrast: informed or heuristic approaches

(University of Freiburg) Foundations of AI April 24, 2015 30 / 47

Breadth-First Search (1)

Nodes are expanded in the order they were produced
(frontier ← a FIFO queue).

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

Always finds the shallowest goal state first.

Completeness is obvious.

The solution is optimal, provided every action has identical,
non-negative costs.

(University of Freiburg) Foundations of AI April 24, 2015 31 / 47

Breadth-First Search (2)

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

(University of Freiburg) Foundations of AI April 24, 2015 32 / 47

Breadth-First Search (3)

Time Complexity:
Let b be the maximal branching factor and d the depth of a solution path.
Then the maximal number of nodes expanded is

b+ b2 + b3 + · · ·+ bd ∈ O(bd)

(Note: If the algorithm were to apply the goal test to nodes when selected
for expansion rather than when generated, the whole layer of nodes at
depth d would be expanded before the goal was detected and the time
complexity would be O(bd+1))

Space Complexity:
Every node generated is kept in memory. Therefore space needed for the
frontier is O(bd) and for the explored set O(bd−1).

(University of Freiburg) Foundations of AI April 24, 2015 33 / 47

Breadth-First Search (4)

Example: b = 10; 1, 000, 000 nodes/second; 1, 000 bytes/node:

Depth Nodes Time Memory

2 110 .11 milliseconds 107 kilobyte

4 11,110 11 milliseconds 10,6 megabytes

6 106 1,1 seconds 1 gigabytes

8 108 2 minutes 103 gigabyte

10 1010 3 hours 10 terabytes

12 1012 13 days 1 petabytes

14 1014 3.5 years 99 petabyte

(University of Freiburg) Foundations of AI April 24, 2015 34 / 47

Uniform-Cost Search

if step costs for doing an action are equal, then breadth-first search finds
path with the optimal costs.

if step costs are different (e.g., map: driving from one place to another
might differ in distance), then uniform-cost search is a mean to find the
optimal solution.

uniform-cost search expands the node with the lowest path costs g(n).
Realization: priority queue.

Always finds the cheapest solution, given that g(successor(n)) ≥ g(n) for
all n.

(University of Freiburg) Foundations of AI April 24, 2015 35 / 47

Depth-First Search (1)

Always expands an unexpanded node at the greatest depth
(frontier ← a LIFO queue).
It is common to realize depth-first search as a recursive function

Example (Nodes at depth 3 are assumed to have no successors):

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

(University of Freiburg) Foundations of AI April 24, 2015 36 / 47

Depth-First Search (2)

in general, solution found is not optimal

Completeness can be guaranteed only for graph-based search and finite
state spaces

Algorithm: see later (depth-limited search)

(University of Freiburg) Foundations of AI April 24, 2015 37 / 47

Depth-First Search (3)

Time Complexity:

in graph-based search bounded by the size of the state space (might be
infinite!)

in tree-based search, algorithm might generate O(bm) nodes in the
search tree which might be much larger than the size of the state space.
(m is the maximum length of a path in the state space)

Space Complexity:

tree-based search: needs to store only the nodes along the path from
the root to the leaf node. Once a node has been expanded, it can be
removed from memory as soon as all its descendants have been fully
explored. Therefore, memory requirement is only O(bm). This is the
reason, why it is practically so relevant despite all the other
shortcomings!

graph-based search: in worst case, all states need to be stored in the
explored set (no advantage over breadth-first)

(University of Freiburg) Foundations of AI April 24, 2015 38 / 47

Depth-Limited Search (1)

Depth-first search with an imposed cutoff on the maximum depth of a
path. e.g., route planning: with n cities, the maximum depth is n− 1.

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

Sometimes, the search depth can be refined. E.g., here, a depth of 9 is
sufficient (you can reach every city in at most 9 steps).

(University of Freiburg) Foundations of AI April 24, 2015 39 / 47

Depth-Limited Search (2)

6 Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
frontier← a priority queue ordered by PATH-COST, with node as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the lowest-cost node infrontier */
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace thatfrontier node withchild

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure forfrontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

function DEPTH-L IMITED -SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL -STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else

cutoff occurred?← false
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
result←RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result 6= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.16 A recursive implementation of depth-limited tree search.

(University of Freiburg) Foundations of AI April 24, 2015 40 / 47

Iterative Deepening Search (1)

idea: use depth-limited search and in every iteration increase search
depth by one

looks a bit like a waste of resources (since the first steps are always
repeated), but complexity-wise it is not so bad as it might seem

Combines depth- and breadth-first searches

Optimal and complete like breadth-first search, but requires much less
memory: O(b d)

Time complexity only little worse than breadth-first (see later)

7

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to∞ do

result←DEPTH-L IMITED -SEARCH(problem ,depth)
if result 6= cutoff then return result

Figure 3.17 The iterative deepening search algorithm, which repeatedly applies depth-limited search
with increasing limits. It terminates when a solution is found or if the depth-limited search returns
failure, meaning that no solution exists.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL -STATE),∞)

function RBFS(problem ,node, f limit) returns a solution, or failure and a newf -cost limit
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
successors← []
for each action in problem .ACTIONS(node .STATE) do

add CHILD -NODE(problem ,node ,action) into successors
if successors is emptythen return failure,∞
for each s in successors do /* updatef with value from previous search, if any */

s.f ←max(s.g + s.h, node .f))
loop do

best← the lowestf -value node insuccessors
if best .f > f limit then return failure, best .f
alternative← the second-lowestf -value amongsuccessors
result ,best .f←RBFS(problem ,best ,min(f limit, alternative))
if result 6= failure then return result

Figure 3.24 The algorithm for recursive best-first search.

(University of Freiburg) Foundations of AI April 24, 2015 41 / 47

Example

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

(University of Freiburg) Foundations of AI April 24, 2015 42 / 47

Iterative Deepening Search (2)

Number of expansions

Iterative Deepening Search (d)b+ (d− 1)b2 + · · ·+ 3bd−2 + 2bd−1 + 1bd

Breadth-First-Search b+ b2 + · · ·+ bd−1 + bd

Example: b = 10, d = 5

Breadth-First-Search 10 + 100 + 1, 000 + 10, 000 + 100, 000

= 111, 110

Iterative Deepening Search 50 + 400 + 3, 000 + 20, 000 + 100, 000

= 123, 450

For b = 10, IDS expands only 11% more than the number of nodes
expanded by (optimized) breadth-first-search.

→ Iterative deepening in general is the preferred uninformed search
method when there is a large search space and the depth of the solution is
not known.

(University of Freiburg) Foundations of AI April 24, 2015 43 / 47

Bidirectional Searches

GoalStart

As long as forwards and backwards searches are symmetric, search times of
O(2 · bd/2) = O(bd/2) can be obtained.

E.g., for b = 10, d = 6, instead of 1, 111, 110 only 2, 220 nodes!

(University of Freiburg) Foundations of AI April 24, 2015 44 / 47

Problems with Bidirectional Search

The operators are not always reversible, which makes calculation the
predecessors very difficult.

In some cases there are many possible goal states, which may not be
easily describable. Example: the predecessors of the checkmate in chess.

There must be an efficient way to check if a new node already appears
in the search tree of the other half of the search.

What kind of search should be chosen for each direction (the previous
figure shows a breadth-first search, which is not always optimal)?

(University of Freiburg) Foundations of AI April 24, 2015 45 / 47

Comparison of Search Strategies

Time complexity, space complexity, optimality, completeness

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional

First Cost First Limited Deepening (if applicable)

Complete? Yesa Yesa,b No No Yesa Yesa,d

Time O(bd) O(b1+bC
∗/εc) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+bC
∗/εc) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yesc Yes No No Yesc Yesc,d

b branching factor
d depth of solution
m maximum depth of the search tree
l depth limit

C∗ cost of the optimal solution
ε minimal cost of an action

Superscripts:
a b is finite
b if step costs not less than ε
c if step costs are all identical
d if both directions use breadth-first search

(University of Freiburg) Foundations of AI April 24, 2015 46 / 47

Summary

Before an agent can start searching for solutions, it must formulate a
goal and then use that goal to formulate a problem.

A problem consists of five parts: The state space, initial situation,
actions, goal test and path costs. A path from an initial state to a goal
state is a solution.

A general search algorithm can be used to solve any problem. Specific
variants of the algorithm can use different search strategies.

Search algorithms are judged on the basis of completeness, optimality,
time complexity and space complexity.

(University of Freiburg) Foundations of AI April 24, 2015 47 / 47

	Problem-Solving Agents
	Problem-Solving Agents
	A Simple Problem-Solving Agent
	Properties of this Agent

	Formulating Problems
	Problem Formulation
	Example Problem Formulation
	Alternative Problem Formulation
	Problem Formulation for the Vacuum Cleaner World

	Problem Types
	Problem Types: Knowledge of States and Actions
	The Vacuum Cleaner Problem
	The Vacuum Cleaner World as a Partially Observable State Problem
	Concepts (1)
	Concepts (2)

	Example Problems
	Example: The 8-Puzzle
	Example: 8-Queens Problem
	Alternative Formulations
	Example: Missionaries and Cannibals
	Formalization of the M&C Problem
	Examples of Real-World Problems

	Search Strategies
	General Search
	Some notations
	Implementing the Search Tree
	Nodes in the Search Tree
	General Tree-Search Procedure
	General Graph-Search Procedure
	Criteria for Search Strategies
	Search Strategies
	Breadth-First Search (1)
	Breadth-First Search (2)
	Breadth-First Search (3)
	Breadth-First Search (4)
	Uniform-Cost Search
	Depth-First Search (1)
	Depth-First Search (2)
	Depth-First Search (3)
	Depth-Limited Search (1)
	Depth-Limited Search (2)
	Iterative Deepening Search (1)
	Example
	Iterative Deepening Search (2)
	Bidirectional Searches
	Problems with Bidirectional Search
	Comparison of Search Strategies

