
Albert-Ludwigs-Universität Freiburg Institut für Informatik
Lecture: Introduction to Mobile Robotics
Summer term 2015 Prof. Dr. Wolfram Burgard

Dr. Gian Diego Tipaldi
Dr. Barbara Frank

Sheet 7
Topic: Extended Kalman Filter

Submission deadline: June 25, 2014
Submit to: mobilerobotics@informatik.uni-freiburg.de

General Notice

In this exercise, you will implement an extended Kalman filter (EKF). A framework con-
taining stubs of all the parts of the EKF is provided to you, so you can concentrate on the
implementation of the filter itself. The framework for the implementation can be obtained
from the website of the course. The tarball contains the following folders:

data This folder contains files representing the world definition and sensor readings used
by the filter.

python This folder contains the EKF framework with stubs for you to complete.

To run the EKF, just run in the terminal python ekf framework.py

sensor.dat world.dat .

Note: You first have to complete all the functions in order to get the filter working correctly.
We are not using any external library for visualizing state of the robot and the landmarks.
The stub for plotting the state of the robot is included in the framework. Once you have
completed the EKF, you should be able to see a simple matplotlib figure popped up for
visualization.

Some implementation tips:

• Turn off the visualization to speed up the computation by commenting the lines in
the main for loop

• To read in the sensor and world data, we have used dictionaries. Dictionaries provide
an easier way to access data structs based on single or multiple keys. The functions
read sensor data and read world data read in the data from the files and build
a dictionary for each of them with timestamps as the primary keys. To access the
sensor data from the data dict, you can use
data dict[timestamp,’sensor’][’id’]

data dict[timestamp,’sensor’][’range’]

data dict[timestamp,’sensor’][’bearing’]

and for odometry you can access the dictionary as
data dict[timestamp,’odom’][’r1’]

1

data dict[timestamp,’odom’][’t’]

data dict[timestamp,’odom’][’r2’]

To access the positions of the landmarks from world dict, you can simply use

world dict[id]

Exercise 1: Theoretical Considerations

The EKF is an implementation of the Bayes Filter.

(a) The Bayes filter processes three probability density functions, i. e.,
p(xt | ut, xt−1), p(zt | xt), and bel(xt). State the normal distributions of the EKF
which correspond to these probabilities.

(b) Explain in a few sentences all of the components of the EKF, i. e., µt, Σt, g, Gt, h,
Ht, Qt, Rt, Kt and why they are needed. What are the differences and similarities
between the KF and the EKF?

Exercise 2: EKF Prediction Step

We assume a differential drive robot operating on a 2-dimensional plane, i.e., its state
is defined by 〈x, y, θ〉. Its motion model is defined on slide 10 (Odometry Model) in the
chapter Probabilistic Motion Models of the lecture slides.

(a) Derive the Jacobian matrix Gt of the noise-free motion function g. Do not use
Python.

(b) Implement the prediction step of the EKF in the function prediction step using
your Jacobian Gt. For the noise in the motion model assume

Qt =

 0.2 0 0
0 0.2 0
0 0 0.02

 .

Exercise 3: EKF Correction Step

(a) Derive the Jacobian matrix Ht of the noise-free measurement function h of a range-
only sensor. Do not use Python.

(b) Implement the correction step of the EKF in the function correction step using
your Jacobian Ht. For the noise in the sensor model assume that Rt is the diagonal
square matrix

Rt =


0.5 0 0 . . .
0 0.5 0 . . .
0 0 0.5 . . .
...

...
...

. . .

 ∈ Rsize(zt)×size(zt).

Once you have successfully implemented all the functions, after running the filter script
you should see the state of the robot being plotted incrementall with each time stamp.

2

